
Evaluation of the Accuracy and Noise Response of an Open-source Pulse Onset
Detection Algorithm on Pulsatile Waveform Databases

Chengyu Liu1, Qiao Li1, Gari D Clifford1,2

1 Department of Biomedical Informatics, Emory University, Atlanta, USA
2 Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA

Abstract

Zong’s open-source algorithm ‘wabp.c’ (2003) has been
widely used for onset detection of arterial blood pres-
sure (ABP) waveforms. This code was subsequently mod-
ified by Li and Clifford (2012) to avoid possible dou-
ble detections in a beat cycle. However, its performance
was not systematically validated, especially on a noisy
pulse database. This study aimed to evaluate its detec-
tion accuracy on both clean and noisy ABP pulse sig-
nals. Synchronously recorded ECG and ABP signals in
two databases from the PhysioNet/Computing in Cardiol-
ogy Challenge 2014 were used. Reference QRS positions
were used as the benchmarks for pulse onset detection.
Three signal quality assessment (SQA) methods, i.e., Sun’s
jSQI (2006), a modified jSQI (jSQI2) and Gaussian Tem-
plate Matching (GTM), were performed and the onset de-
tection results were compared with and without each SQA.
For the clean set-p database, the algorithm achieved an
accuracy of 99.56% without SQA and slightly enhanced
its accuracy to 99.97%, 99.84% and 99.79% when using
the jSQI, jSQI2 and GTM methods respectively. For the
noisy set-p2 database, the algorithm achieved an accuracy
of only 76.42% without SQA but significantly increased to
96.73%, 90.60% and 90.79% respectively. The jSQI2 and
GTM methods exhibited a higher accuracy for assessing
the ABP signal quality compared to the jSQI method. In
summary, the open-source pulse onset detection algorithm
was found to achieve high detection accuracy in a low
noise pulsatile database while relative low detection accu-
racy was observed when using a relatively noisy database.
Combining the algorithm with an appropriate SQA proce-
dure significantly improved beat detection accuracy.

1. Introduction

Pulsatile signals such as arterial blood pressure (ABP)
and photoplethysmograph (PPG) contain rich information
about the cardiovascular system and can be used to monitor
the cardiac activity and verify electrocardiogram (ECG)-
based alarms for patients in an intensive care unit (ICU)

[1]. Automatic pulse onset detection is a fundamental
stage for the beat-level analysis of pulsatile signals. With
the onset of each pulse first identified, many other features,
as well as the useful clinical parameters, can be calculated
and derived, such as slope, pulse peak, pulse amplitude,
pulse transit time (PTT), pulse wave velocity (PWV), etc
[2]. These features and parameters can be further used for
arrhythmia detection, blood pressure and cardiac output
estimation, respiration rate estimation and vascular assess-
ment [3].

Accurate and robust detection of pulse onset can be
achieved on clean pulsatile signals [4, 5]. However, in an
active clinical environment where noise and artifacts are
inevitable, pulse onsets can be easily blurred by noise and
motion artifacts due to their intrinsically small amplitude.
Thus, accurate and robust pulse onset detection is chal-
lenging in a noisy environment.

The open-source algorithm ‘wabp.c’ proposed by Zong
et al. [6] from www.physionet.org has been widely used
for clinical applications. This algorithm was subsequently
modified by Li and Clifford [7] with a time and amplitude
threshold adjustment by changing the slope width of pulse
rising edge from 130 to 170 ms and extending the eye-
closing period after each detection from 250 to 340 ms,
to avoid possible double detections in a beat cycle. Since
there is no formal validation of this modified algorithm,
this study attempts to do so in the context of noisy data.

2. Methods

2.1. Data

A total of 173 synchronously recorded ECG and ABP
pulsatile signals from the PhysioNet/Computing in Car-
diology Challenge 2014 were used [8]. These recordings
were from two databases (100 from set-p and 73 from set-
p2). Recordings in set-p had relatively high signal quality
(SQ) and thus were used as the clean database, whereas the
SQ in recordings from set-p2 was relatively poor and set-
p2 was therefore used as noisy database. Signals had a du-
ration of 10 minutes and had a varied sample rate between
120 and 1,000 Hz. Manually annotated QRS locations in
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ECG signals were provided as the reference benchmarks
for pulse onset detection.

2.2. Signal quality assessment

Some ABP pulsatile signals, especially from the set-p2
database are very noisy, resulting in the pulse onsets are
almost impossible to be identified by visual inspection. It
is therefore reasonable to perform a signal quality assess-
ment (SQA) prior to analysis.

Sun et al. [5] described an open-source method (‘jSQI’)
that tends to capture high energy noise and would invali-
date a beat if neighboring beats have low SQ. It is therefore
overly sensitive for identifying poor quality beats. Johnson
et al. [9] subsequently modified the jSQI code to address
these issues (termed jSQI2 here).

In this study, in addition to jSQI and jSQI2, we pro-
pose a new method for assessing the ABP signal qual-
ity based on Gaussian Template Matching (GTM). For
GTM method, we firstly generated four hand-crafted typ-
ical pulse templates as shown in Figure 1. Each tem-
plate, f(n), consisted of three positive Gaussian functions
(f∗1 (n), f

∗
2 (n) and f∗3 (n)) defined as [10, 11]:

f(n) =
∑3

k=1 f
∗
k (n)

f∗k (n) = Hk × exp(− 2×(n−Ck)
2

W 2
k

)

where Hk denotes the Gaussian peak amplitude, Ck de-
notes the Gaussian peak position, Wk denotes the Gaus-
sian half-width and n is the sample index (running from 1
to 1000). The amplitude of template f(n) is normalized
to be 1. The parameter settings for each Gaussian function
for each of the four archetypical pulse templates are given
in Table 1.

The GTM SQ was then determined by calculating the
maximum correlation (MaxCor) between each detected
pulse and the four templates. Single beat pulse was re-
garded having poor SQ if MaxCor meets one of the fol-
lowing two conditions:

Condition 1: MaxCor<55%
Condition 2: MaxCor<80% and (meets A1 or A2)

where A1: pulse amplitude<20 mmHg and A2: maximum
of the pulse derivative signal>10 mmHg.

2.3. Pulse onset detection algorithm

The open-source pulse onset detection algorithm con-
sisted of three components: a low-pass filter, a windowed
and weighted slope sum function, and a decision rule mod-
ule [6]. First, a second order recursive filter with a 3 dB
cut-off frequency of 16 Hz was used to suppress high fre-
quency noise [12]. Then a slope sum function (SSF) was
calculated by summing the difference signal of the filtered
ABP pulse within a fixed time window. This SSF signal
was used to enhance the upslope of ABP pulse, as well as
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Figure 1. Archetypical ABP pulse templates for the GTM
SQ method.

Parameter Pulse template
Type 1 Type 2 Type 3 Type 4

H1 0.7 0.7 0.8 0.6
H2 0.7 0.05 0.01 0.6
H3 0.15 0.3 0.1 0.1
C1 120 200 220 200
C2 200 320 500 380
C3 380 550 680 650
W1 80 170 220 200
W2 100 150 400 200
W3 400 300 300 400

Table 1. Parameter settings for the Gaussian functions for
each type of pulse template.

to suppress the remainder of the ABP waveform. The fixed
time window was set as 130 ms in Zong et al.’s work [6]
and was subsequently modified to 170 ms by Li and Clif-
ford [7]. The onsets of the SSF pulse coincide with the
onsets of the ABP pulse and the SSF signal is simple to
process. Thus, the pulse onsets were detected from the SSF
pulse by a decision rule module. First, an adaptive thresh-
olding method was applied to the SSF signal to detect the
appropriate amplitude and then a local search strategy for
identifying the likely pulse onsets was employed. Finally,
to avoid double detection on the same pulse beat, a 250
ms eye-closing period was applied, during which the new
detected pulse onset was rejected. This eye-closing period
was changed to 340 ms by Li and Clifford [7].

2.4. Algorithm evaluation

Let x1, x2, · · · , xN denote the reference QRS positions.
For each position xi, the numbers of detected pulse onsets
within two time regions: [xi, xi + δ] and (xi + δ, xi+1)
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were recorded. The detected pulse onsets were expected
to appear in the former region. Parameter δ is a tolerance
for determining the true positive (TP ), false positive (FP )
and false negative (FN ) detections and was set as 0.6 ×
(xi+1 − xi) in this study. The numbers of TP , FP and
FN detections were counted and the evaluation metrics
of sensitivity (Se), positive predictivity (P+) and accuracy
(Acc) were calculated in the standard manner as:
Se = TP/(TP + FN)× 100%
P+ = TP/(TP + FP )× 100%
Acc = TP/(TP + FN + FP )× 100%

3. Results

As shown in Table 2, for the clean set-p database, the
open-source pulse onset detection algorithm without SQA
accurately detected 72,132 (TP ) pulse onsets among a to-
tal of 72,313 beats, falsely detected 141 (FP ) extra pulse
onsets and missed 181 (FN ) actual pulse onsets, which
produced an Acc measure of 99.56%. We also observed
that SQA procedures filtered the potential incorrect onset
detection pulse beats with poor SQ and thus improved the
detection accuracy. The numbers of filtered pulse beats
were 3,381 for jSQI but only 502 for jSQI2 and 203 for
GTM respectively, demonstrating that jSQI is consider-
ably more aggressive in beat removal. For this clean data,
the pulse onset detection algorithm with SQA produced
slightly higher Acc measures than without SQA, with im-
provements going from 99.56% to 99.97%, 99.84% and
99.79% respectively for the three SQA procedures.

The use of SQA generated more obvious effect on the
noisy set-p2 database. Without SQA, the pulse onset de-
tection algorithm truly detected 49,482 (TP ) pulse on-
sets but falsely detected 7,532 (FP ) extra pulse onsets
and missed 7,740 (FN ) actual pulse onsets, which pro-
duced a low Acc measure of 76.42%. By contrast, Acc
measures were significantly improved to 96.73%, 90.60%
and 90.79% when performing jSQI, jSQI2 and GTM SQA
methods respectively. However, the number of filtered pul-
satile beats by the SQA procedures was also large. They
were as many as 21,303 (accounting for 37%) removed for
jSQI, 14,658 (26%) removed for jSQI2 and 13,346 (23%)
removed for the GTM method. The highest Acc result re-
ported by the jSQI method is due to the significantly larger
number of the removed pulse beats by this method creating
a bias towards far easier detections.

Figure 2 shows a SQA and onset detection example for
an ABP pulse signal from recording 2850 in set-p2. Three
SQA methods, i.e., jSQI, jSQI2 and GTM, were used for
assessing the ABP pulse signal quality. The wabp code
modified by Li and Clifford [7] was used for detecting the
pulse onsets. The upper panel shows the ECG signal (ref-
erence QRS positions are marked as red circles) and the
lower three panels shows the corresponding SQA and on-

set detection results for ABP pulse (detected pulse onsets
are marked as pink circles). The shaded areas show the
expected area of detected onsets and the solid colours in-
dicate poor SQ (black), a TP detection (green), and a FP
and/or a FN detection (red). It is clear that jSQI method
tends to report poor SQ beats even though the pulse beat
has little noise component. jSQI2 and the new GTM meth-
ods give more accurate SQA results than jSQI. In addition,
the fourth beat has incorrect FP onset detection and thus
it is labelled as red indicator.
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Figure 2. Example of SQA and onset detection results
for ABP signal from recording 2850. The upper panel (A)
shows the synchronous ECG signal and three lower pan-
els show ABP signal using different SQA methods: (B)
jSQI, (C) jSQI2 and (D) GTM. Reference QRS positions
are marked as red circles (•) and the detected ABP pulse
onsets marked are marked as pink circles (•). The shaded
areas indicate the region of detected onsets. Three flag in-
dicators at the top of pulse signal indicate the SQ results
for each beat pulse: a poor SQ beat (black), a TP detec-
tion (green), and a FP and/or a FN detection (red). Note
that jSQI incorrectly labels the beat as noisy.

4. Discussion and conclusion

In this study, we tested an open-source pulse onset de-
tection algorithm on both clean and noisy ABP pulsatile
signals. The results showed that the tested algorithm could
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Variable Clean data (set-p) Noisy data (set-p2)
Without SQA jSQI jSQI2 GTM Without SQA jSQI jSQI2 GTM

# recording 100 100 100 100 73 73 73 73
# total onsets 72,313 68,932 71,811 72,110 57,222 35,919 42,546 43,876
# TP onsets 72,132 68,932 71,810 72,079 49,482 35,546 42,114 43,437
# FN onsets 181 0 1 31 7,740 373 432 439
# FP onsets 141 23 115 123 7,532 828 3,925 3,970
Se (%) 99.75 100 100 99.96 86.47 98.96 98.98 99.00
P+ (%) 99.80 99.97 99.84 99.83 86.79 97.72 91.47 91.63
Acc (%) 99.56 99.97 99.84 99.79 76.42 96.73 90.62 90.79

Table 2. Results of the tested open-source pulse onset detection algorithm for both clean and noisy databases.

achieve high detection accuracy on the clean data withAcc
measure of 99.56%. However, theAccmeasure dropped to
76.42% when evaluated on the noisy data, indicating the
strong noise response on the tested algorithm.

We compared the accuracy of the tested algorithm be-
tween with and without SQA applied. By using SQA to
remove noisy beats, Acc measures were slightly enhanced
for the clean data, and greatly enhanced for noisy data.
Thus, implementing a SQA procedure is necessary for the
pulse onset detection algorithm, especially when process-
ing low quality signals. We also compared the perfor-
mances of three different SQA procedures and the results
showed that the open-source jSQI method tends to identify
many high SQ pulse beats as poor SQ beats. jSQI2 and a
novel GTM methods were shown to be more accurate for
assessing the ABP signal quality than jSQI.

The novelty of the GTM method described here for as-
sessing the ABP pulse signal quality, like the other two
methods, does not require a pre-learning process to ob-
tain the pulse templates and can perform the analysis from
the first beat. The GTM method has potential utility for
use in the SQA of pulsatile signals in real-time environ-
ments. Moreover, the creation of a bespoke template on a
per-patient basis, during a rapid learning period, and then
later adapting over time, provides the potential for a more
accurate system, tuned to a variety of waveforms, which
do not exhibit natural upper and lower bounds (such as the
photoplethysmogram).
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