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Abstract
For evaluating performance of nonlinear features and iterative and non-iterative classification algorithms (i.e. kernel sup-
port vector machine (KSVM), random forest (RaF), least squares SVM (LS-SVM) and multi-surface proximal SVM based 
oblique RaF (ORaF) for ECG quality assessment we compared the four algorithms on 7 feature schemes yielded from 27 
linear and nonlinear features including four features derived from a new encoding Lempel–Ziv complexity (ELZC) and the 
other 26 features. Seven feature schemes include the first scheme consisting of 7 waveform features, the second consisting 
of 15 waveform and frequency features, the third consisting of 19 waveform, frequency and approximate entropy (ApEn) 
features, the fourth consisting of 19 waveform, frequency and permutation entropy (PE) features, the fifth consisting of 19 
waveform, frequency and ELZC features, the sixth consisting of 23 waveform, frequency, PE and ELZC features, and the 
last consisting of all 27 features. Up to 1500 mobile ECG recordings from the Physionet/Computing in Cardiology Chal-
lenge 2011 were employed in this study. Three indices i.e., sensitivity (Se), specificity (Sp) and accuracy (Acc), were used 
for evaluating performances of the classifiers on the seven feature schemes, respectively. The experiment results indicated 
PE and ELZC can help to improve performance of the aforementioned four classifiers for assessing ECG quality. Using all 
features except ApEn features obtained the best performances for each classifier. For this sixth scheme, the LS-SVM yielded 
the highest Acc of 92.20% on hidden test data, as well as a relatively high Acc of 93.60% on training data. Compared with 
the other classifiers, the LS-SVM classifier also demonstrated the superior generalization ability.

Keywords  ECG quality assessment · Nonlinear features · Encoding Lempel–Ziv complexity · LS-SVM · Random forest

1  Introduction

Combination of several machine learning algorithms (i.e. 
ensemble decision tree, neural networks and support vector 
machine (SVM)) and time–frequency features has been used 
for assessing quality of physiological signals [1–3]. For these 
methods, two main factors affect their assessment results, 
and the first factor is effectiveness of features extracted by 

artificial experience and another factor is performance of 
several machine learning algorithms on these features. So 
far time–frequency features are popularly used for assessing 
physiological signals because calculation of these features 
are relatively simple as well as time features are more easy 
to be identified. Li et al. [4] utilized time features derived 
from the beat to assess quality of pulsatile signals. Orphani-
dou et al. [5] assessed quality of heart rate variability using 
signal quality index based on a simple rule, the heart rate 
calculated from the 30-s window must fall within a physi-
ologically probable range of 40–180 beats per minute. Lang-
ley et al. [6] and Johannesen [7] determined poor quality 
of ECG signals when waveform features of signals did not 
satisfy with the preset thresholds. Several frequency features 
generated from power spectrum of different ECG frequency 
bands were employed to assess quality of ECG signals [8]. 
Clifford et al. [3] and Zhang et al. [2] combined time domain 
features with power spectrum features so as to achieve rela-
tively satisfied results. Actually, in quality assessment, the 
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ECG recordings are not preprocessed so that waveforms of 
the recordings are complicated and arbitrary, so it causes 
poor generalization ability of wave features, furthermore 
power spectrum features also contain ambiguous informa-
tion since frequency range of ECG and that of noise usually 
overlap. So the nonlinear analysis should be considered to 
assess quality of physiological signal.

Actually, in [9], the nonlinear analysis i.e. recurrence 
properties already were used in ECG quality classification, 
furthermore not only nonlinear and nonstationary charac-
teristics within 3-lead vector cardiogram yielded from the 
12-lead ECG, but also self-organizing neural network was 
employed to control the quality of ECG. Ensemble decision 
tree combined with frequency features derived from power 
spectrum was reported in [8]. In the works of Kužílek et al. 
[10] and Clifford et al. [3, 11], Kernel function based SVM 
(KSVM) was used. Clifford et al. [3] compared three classi-
fiers: naive Bayes, SVM and multilayer perceptron artificial 
neural network classifiers and verified that SVM is the most 
valuable method for ECG quality assessment. However, in 
the actual applications, contaminated ECG segments due 
to noises and outliers usually result in the absolute rejec-
tion for an “acceptable” recording. In our latest experiment, 
we proposed a fuzzy SVM method to restrict the effect of 
the outliers on ECG signal quality assessment [12]. How-
ever we further found fuzzy function could restrain effect of 
the essential support vectors on classification by penalizing 
their contribution weights, especially for the common vague 
separating hyper plane used in signal quality assessment. 
Previous study has showed that lease squares support vector 
machine (LS-SVM) classifier, using the quadratic loss func-
tion as the decision function, can reduce effects of noises 
and outliers on classification accuracy, significantly improve 
accuracy of classification, as well as obtain good generaliza-
tion ability [13]. Although SVM and its variants exhibit rela-
tively better performance, however a non-iterative method 
namely, random forest (RaF) has become popular research 
method in solving classification and regression problems 
[14–18], and it builds a classification ensemble with a set 
of decision trees and is comparable in performance to many 
other non-linear learning algorithms, and it was considered 
as a competitive classifier among 179 classifiers when tested 
with 121 datasets [14]. Zhang et al. [15] proposed a multi-
surface proximal support vector machine based oblique 
random forest (ORaF) and verified its robust classification 
performance. It is necessary to compare performance of the 
iterative methods i.e. SVM and LS-SVM, with that of non-
iterative methods i.e. RaF and ORaF on quality assessment 
field.

At present, nonlinear complexity methods are not yet 
reported in quality assessment of physiological signals. In 
fact a proper nonlinear complexity method can be utilized 
to classify quality of ECG since unexpected randomness 

and nonlinear chaotic within signals are different com-
ponent within physiological signals. However the typical 
complexity methods approximate entropy (ApEn), permu-
tation entropy (PE) and a new encoding Lempel–Ziv com-
plexity (ELZC) have different performance for measuring 
complexity within signals, so it is necessary to evaluate 
their performance for reflecting the inherent nonlinear 
properties within ECG signals for quality assessment. In 
addition SVM and RaF are regarded as potential machine 
learning methods on analysis of physiological signals, so 
it is necessary to explore efficiencies of the iterative meth-
ods i.e. SVM and LS-SVM, and that of the non-iterative 
methods i.e. RaF and ORaF on several feature schemes 
including linear and nonlinear features in ECG quality 
assessment. So in this study, for validating classification 
performance of the aforementioned four machine learn-
ing algorithms on ECG quality assessment and capabil-
ity of waveform features, frequency features and several 
common nonlinear features (i.e. ApEn, PE and ELZC) to 
reflect the inherent information within signals, we carried 
out the four algorithms on seven feature schemes respec-
tively. Finally this study aimed to find a satisfied classi-
fication algorithm and feature scheme for assessing ECG 
quality.

2 � Method and Material

2.1 � Data

All experiment data are derived from the Physionet/CinC 
Challenge 2011 in the MIT/BIH database and are standard 
12-lead ECG recordings (leads I, II, III, aVR, aVL, aVF, 
V1, V2, V3, V4, V5 and V6) with a sample of 500 Hz 
and duration of 10 s [19]. These data collected by smart 
phone were annotated by clinical experts and technicians 
as “acceptable” or “unacceptable” ECGs for clinical inter-
pretation. All ECG recordings are divided into two sub-
sets: Set A and Set B, wherein Set A includes 1000 labeled 
ECG recordings and is used as the training data, and Set 
B includes 500 ECG recordings where the labels are not 
publicly available and is used as the testing data. Table 1 
details the data profile.

Table 1   Data profile of the training and test set

Database # Recordings Time 
length 
(s)

Sample 
rate 
(Hz)# Acceptable # Unaccep-

table
# Total

Training 775 225 1000 10 500
Test Unknown Unknown 500 10 500
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2.2 � Multiple Features Calculation

For time and frequency features, we improved the existed 
quality features based on our previous work [12].

2.2.1 � Waveform Features

The most prominent feature is one of waveform features, 
namely lead-fall feature. For real time ECG recordings 
collected by smart phone, poor electrode contact or lead 
movement could cause signal waveform that seems like a 
straight line, however, in practice, the waveforms have slight 
fluctuation. So in this study, lead fall was detected by calcu-
lating the difference between the maximum and minimum 
amplitude in any lead, and lead fall was found when the dif-
ference was less than 0.025 mV. Finally this study employed 
the number of leads containing lead-fall in a 12-leads ECG 
recording as the lead-fall feature FLf of the ECG recording.

Baseline drift is also relatively more common distortion 
of waveform and cause poor quality signals for clinic appli-
cation. In this study, we calculated four features (FBd1, FBd2, 
FBd3 and FBd4) based on baseline drift. FBd1 and FBd2 denoted 
the maximum and mean value of the maximum voltage of 
baseline curve of each lead within 12 leads, respectively.

Additionally, baseline drift is also considered to occur 
when amplitude of baseline is higher than 1.5 mV for lasting 
more than (continuous) 1.5 s. The Atli denoted the accumu-
lated time length of baseline signals of the ith lead lasting 
larger than 1.5 mV, and i = 1, …, 12. Then two features FBd3 
and FBd4 were defined as follows:

Actually, few huge impulses exist in some acceptable 
ECG recordings, however more number of huge impulses 
is found in poor quality ECG recordings. This study firstly 
computed the number of huge amplitudes that were greater 
than 5.0 mV within each lead of any 12-lead recording, then 
they were denoted as HAi (i = 1, 2, …, 12). Finally the maxi-
mum and mean of the HAi were calculated and denoted as 
quality features FHa1 and FHa2, respectively.

(1)
FBd3 = max(Atli)

FBd4 = mean(Atli)

i = 1, 2,… 12

2.2.2 � Power Spectrum Features

Normal ECG signals have a range of frequency band from 
0.05 to 100 Hz. High frequency noise within ECG signals 
is mainly caused by muscle electricity during periods of 
contraction or due to a sudden body movement, and its fre-
quency range is from 0 Hz to several kHz. It can be seen 
that frequency component of QRS complex overlaps with 
that of high frequency noise. Low frequency noise is mainly 
caused by baseline drift, and its frequency is usually below 
1 Hz, even 0.5 Hz [20]. According to the aforementioned 
frequency ranges, this study employed the ratio of power 
spectral density (PSD) in different frequency ranges to that 
in the overall energy band as quality features to assessing 
ECG quality. Table 2 shows that several PSD features. In 
this study, the AR model spectrum estimation algorithm 
and Burg algorithm were performed to calculate PSD and 
estimate parameter.

According to Table 2, the following features (FPsd1 to 
FPsd8) were derived:

FPsd1, FPsd2, FPsd3 and FPsd4 represented the maximum, 
the minimum, the mean and the standard deviation of PSDi

h/n 
respectively.

FPsd5, FPsd6, FPsd7 and FPsd8 represented the maximum, 
the minimum, the mean and the standard deviation of PSDi

l/n 
respectively.

2.2.3 � Non‑linear Features

The non-linear features are expected to address the inher-
ent non-linear characteristic in ECG signal. Several non-
linear approaches, such as approximate entropy (ApEn) [21], 
permutation entropy (PE) [22] and our recently developed 
ELZC method, were employed to analyze the ECG signal 
quality.

The ELZC method can not only distinguish chaotic and ran-
dom characteristics in the ECG recording [23] but also indicate 
noise level contained in the ECG recording, especially for the 
signals contaminated by high frequence noise. The classical 
LZ complexity consists of two steps. Firstly, an original time 
series is transformed into a new binary symbolic sequence by 
comparing with the mean or median of the original series, then 
LZ value from the binary sequence is calculated. In this study, 

Table 2   Definitions of the PSD 
features in each lead of 12-lead 
ECG recording

Features Description

PSDi
n Power of the normal power in the band of 0.05–100 Hz in the ith lead

PSDi
h Power of high frequence noise in 10–1000 Hz in the ith lead

PSDi
l Power of low frequence noise in 0–1 Hz in the ith lead

PSDi
h/n Power ratio of PSDh to PSDn in the ith lead

PSDi
l/n Power ratio of PSDl to PSDn in the ith lead
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the original series was transformed into an 8-state symbolic 
(3-bit binary) sequence by an encoding way.

Each xi within an original signal X = x1, x2, …, xn is trans-
formed into a 3-bit binary symbol b1(i)b2(i)b3(i), and the 
detailed process consists of three steps and is described as 
follows [23]:

Step 1, b1(i) is determined by comparing xi with the mean 
of signal X, and the b1(i) is set 0 when the xi is less than the 
mean, otherwise the b1(i) is 1.

Step 2, b2(i) is 0 when difference between xi and xi-1 is less 
than 0, otherwise the b2(i) is set to 1. Initially, b2(1) is set to 0.

Step 3, the calculation process of the third digit b3(i) is 
relatively complex, where a variable Flag is first denoted as 
follows:

where dm is the mean distance between adjacent points 
within signal X. Subsequently, b3(i) is calculated as follows:

where b3(1) is 0.
After the symbolic process, the LZ value of the new sym-

bolic sequence will be calculated, and the detailed calculation 
process is illustrated in detail in [23].

In this study, the ELZC was employed as non-linear quality 
feature of the ECG signals. The value of ELZC from 12 leads 
were calculated as ELZCi (i = 1, 2, …, 12), and then four ELZC 
features derived from ELZCi were defined as follows:

where FELZC4 is the standard deviation of ELZCi.
Similarly, four PE and ApEn features were also derived 

from the generated PE and ApEn values from 12 leads as 
follows:

(2)Flag(i) =

{
0 if ||xi − xi−1

|| < dm

1 if ||xi − xi−1
|| ≥ dm

, i = 2, 3,… , n ,

(3)b3(i) = NOT(b2(i) XOR Flag(i)), i = 2, 3,… , n,

(4)

FELZC1 = max(ELZCi)

FELZC2 = min(ELZCi)

FELZC3 = mean(ELZCi)

FELZC4 = std(ELZCi)

i = 1, 2,… , 12,

(5)

FApEn1 = max(ApEni)

FApEn2 = min(ApEni)

FApEn3 = mean(ApEni)

FApEn4 = std(ApEni)

FPE1 = max(PEi)

FPE2 = min(PEi)

FPE3 = mean(PEi)

FPE4 = std(PEi)

i = 1, 2,… , 12

where FApEn4 and FPE4 is the standard deviation of ApEni and 
PEi, respectively.

2.2.4 � Features Normalization

In the study, the feature vector X for each ECG recording 
was zero-mean normalized as:

where μX and σX are the mean and standard deviation of fea-
ture vector X, respectively. After zero-mean normalization, 
each feature vector has a mean value of 0.

2.3 � Comparative Classifiers

2.3.1 � Kernel Support Vector Machine (KSVM)

For the classical KSVM, eventually, a nonlinear classifica-
tion problem can be transform into a dual optimization prob-
lem, and it is described as [12, 24]:

where each Xi ∈ Rd (i = 1,2, …, n), is a training sam-
ple (herein, a feature set of an ECG recording), αi are the 
Lagrange multipliers; yi are the known category of Xi; C 
is penalty parameter, and K is a nonlinear kernel function. 
The training procedure of KSVM classifier is essentially a 
constrained quadratic optimization problem. The decision 
function is defined as:

where b is the bias parameter.

2.3.2 � Least squares vector machine (LS‑SVM)

According to [13], LS-SVM with Gaussian radial basis func-
tion (GRBF) function obtains a more competitive perfor-
mance than that of the conventional SVM. Let Rd denote 
the feature space. Xi ∈ Rd (i = 1,2, …, n) are a set of fea-
ture vectors and can be treated as the sequence of training 
points, and yi ∈ {− 1,1} are the corresponding class label of 
Xi (yi = 1 for positive class and yi = − 1 for negative class).

(6)x =
X − �X

�X
,

(7)

max
�

{
n∑
i=1

�i −
1

2

n∑
i=1

n∑
j=1

�i�jyiyjK(Xi,Xj)

}

s.t. 0 ≤ �i ≤ C,

n∑
i=1

�iyi = 0,

(8)f (X) = sign

( ∑
Xi∈SV

�iyiK(Xi,X) + b

)
,
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For binary classification problems, the LS-SVM classi-
fier aims to obtain the parameters w and b within a decision 
function by solving the following optimization problem:

Subject to the equality constraints

where w is weight vector; C is a trade-off parameter indicat-
ing a relative importance of the model complexity when 
compared to a training error, namely the penalty parameter; 
ei are training errors associated with the i-th sample, and are 
used to realize soft margins; and φ(·) is a nonlinear function 
which maps the input space into a higher dimensional space. 
This formulation consists of equality instead of inequality 
constraints and takes into account a squared error with regu-
larization term similar to ridge regression.

The solution is obtained after constructing the 
Lagrangian:

where αi are the Lagrange multipliers that can be posi-
tive or negative in the LS-SVM formulation, and the 
αi obey the equality constraints as follows from the 
Karush–Kuhn–Tucker (KKT) conditions:

The linear KKT system can also be written as the follow-
ing set of linear equations:

where Y = [y1,…,yN], 1v= [1,…,1], e = [e1,…,eN], α = [α1, 
…, αN], and the matrix Ω(Xi, Xj) = yi, yjK(Xi, Xj). The Mer-
cer’s condition is used for the Ω, and so the kernel function 
responsible for the nonlinear mapping is provided by K(Xi, 
Xj) = φ(Xi)Tφ(Xj), i, j = 1, …, N.

The decision function of LS-SVM model for classifica-
tion is provided in the following equations:

(9)min J(w, b, e) =
1

2
w
T
w +

C

2

N∑
i=1

e2
i
,

(10)yi
[
w
T�(X) + b

]
= 1 − ei, i = 1,… , N,

(11)

L(w, b, e;�) = J(w, b, e) −

N∑
i=1

�i
{
yi[w

T�(Xi) + b] − 1 + ei
}

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�L

�w
= 0 → w =

N∑
i=1

�iyi�(Xi)

�L

�b
= 0 →

N∑
i=1

�iyi

�L

�ei
= 0 → �i = �ei, i = 1,… , N

�L

��i
= 0 → yi

�
w
T�(Xi) + b

�
− 1 + ei, i = 1,… , N

(13)
[
0 −YT

Y Ω + C−1I

][
b

�

]
=

[
0

1v

]
,

where SV denotes a support vector set; Xi are the ith support 
vector; yi are the known category of Xi, αi are the Lagrange 
multipliers with 0 < αi< C; and X is the data to be classified. 
Parameters αi

* and b are obtained during the training process.
The kernel function can affect the classification perfor-

mance of the SVM classifier [25, 26]. The Gaussian radial 
basis function (GRBF) is a popular kernel function and is 
employed in this study:

where σ is the parameter of Gaussian kernel function.
The selection of GRBF parameter σ in Eq. (15) and 

error penalty factor C in Eq. (13) affects the precision of 
the LS-SVM classifier significantly. In fact, there is not 
a unified theory for the selection of parameter σ and C. 
The parameters (σ, C) can be set by searching a parameter 
space for the best evaluating estimator performance score.

In this study, we tested each pair of parameters (σ, C) 
in the KSVM and LS-SVM classifier and its correspond-
ing classification accuracy using grid search (GS) method.

2.3.3 � RaF

RaF is an ensemble machine learning technique widely 
used in classification. The basic principle is that a group of 
“weak learners” is combined to form a “strong learner”. It 
consists of a collection of decision tree classifiers defined 
as {h(x, θk), k = 1, …} where θk represent identically dis-
tributed random vectors. Each tree is grown using training 
set and random vector θk, and casts a unit vote for the most 
popular class at input vector x.

An ensemble of classifiers h1(x), h2(x), …, hk(x) is 
given, and a training set is generated by random sampling 
from distribution of the random vector X and Y. The mar-
gin function is defined as

where I(·) is an indicator function [27, 28].
In RaF algorithm, the generalization error is given by:

where X and Y are random vectors that indicate the prob-
ability is over the X, Y space and mg represents the margin 
function measure, the extent to which the average number 

(14)f (X) = sign

( ∑
Xi∈SV

�iyiK(Xi,X) + b

)
,

(15)K(Xi,X) = exp

(
−‖‖X − Xi

‖‖2
�2

)
,

(16)mg(X,Y) = avkI(hk(X) = Y) −max
j≠Y

avkI(hk(X) = j)

(17)PE∗ = PX,Y (mg(2X,Y) < 0)
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of votes at random vectors for the right output exceeds the 
average vote for any other output.

2.3.4 � ORaF

Zhang and Suganthan [29] proposed an ORaF method using 
a set of oblique decisions tree based on multi-surface proxi-
mal support vector machine (MPSVM) wherein MPSVM 
was employed to split. The MPSVM is proposed for binary 
classification problem and seeks two planes in Rn [29, 30] 

where the first plane (W1, λ1) is closest to the samples of 
class 1 and furthest form the samples in class 2, while the 
second plane (W2, λ2) is closest to the samples in class 2 and 
furthest from the samples in class 1. Eventually this leads to 
the following optimization problem:

where G and H are symmetric matrices in R(n+1)×(n+1). 
Finally the two clustering hyperplanes can be found by the 
eigenvectors corresponding to the smallest eigenvalues of 
the following two generalized eigenvalue problems:

The ORaF is based on oblique decision tree ensemble 
where decision tree is growing using heterogeneous test 
functions. Actually for the oblique decision tree, each deci-
sion hyperplane in the internal node of tree classifier is not 
always orthogonal to a feature axis. According to geometric 
properties of a randomly selected feature subset from the 
training set, each internal node is divided into two hyper-
classes. Then MPSVM is used for obtaining two clustering 
hyperplanes, and each hyperplane is closest to one group 
of the data, and in the meanwhile remains as far as possible 
from the other group. Finally the test hyperplane for this 
internal node uses one of the bisectors of the two hyper-
planes. Regularization methods, i.e. Tikhonov, axis-parallel 
and null space approaches, are used for handling the small 
sample size problem as the tree grows. In this study, the RaF 
based on MPSVM with Tikhonov approach was employed.

2.4 � Evaluation Procedure

In this study, three statistics indices i.e. sensitivity (Se), 
specificity (Sp) and assessment accuracy (Acc) were uti-
lized to evaluate performance of the aforementioned four 
machine learning classifiers i.e. KSVM, RaF, ORaF and the 

(18)
X ∗ W1 − �1 = 0

X ∗ W2 − �2 = 0

(19)min
z≠0

z′Gz

z′Hz
,

(20)
Gz = �Hz, z ≠ 0,

Lz = �Mz, z ≠ 0.

new LS-SVM. The Acc is ratio of the number of correctly 
identified recordings (including acceptable and unaccepta-
ble) to all training recordings. The Se denotes a percentage 
of unacceptable recordings that are correctly recognized as 
unacceptable in training data, and it represents capability 
of a classifier to correctly identify unacceptable recordings. 
The Sp denotes a percentage of acceptable recordings that 
are correctly identified as acceptable recordings in training 
data, and it exhibits capability of a classifier to correctly 
identify acceptable recordings.

Figure 1 shows that flowchart of evaluation procedure, 
which consists of three steps. In step 1, the multiple fea-
tures were extracted by analyzing the lead-fall, baseline drift, 
extreme amplitude, power spectrum and non-linear charac-
teristics of the ECG signals. Feature selection methods can 
affect results of data analysis [31]. For comparing perfor-
mance of ELZC and selecting optimal features, 7 feature 
schemes were designed (as shown in Table 3) to compare 
classification performances of the four classifiers when using 
different number of signal quality features. In step 2, the 
zero-mean normalization was employed for data preprocess-
ing procedure. Then parameters of the KSVM and LS-SVM 
classifiers were optimized by the GS method using the 1,000 
training ECG recordings, for each of the 7 feature schemes. 
Thus, the optimized parameters were determined. In step 3, 
we compared performances of the KSVM, LS-SVM, RaF 
and ORaF classifiers, for classifying the ECG recordings 
as one of two types i.e., acceptable or unacceptable, by 
using K-fold cross validation (K-CV) method. K-CV was a 
relatively effective method to avoid over-fitting because the 
training sample is independent of the validation sample. For 
the 1000 training ECG recordings, a K-fold partition of the 
dataset was created. For each of the K experiments, K − 1 
folds were used for training and the remaining one was used 
for testing. For the evaluation of each feature scheme, the 
average results from the K-fold results were reported, and 
the results on test dataset were used as the final classifier 
performance evaluation. In this study, K was set to 6.

3 � Experiment Results

3.1 � Parameter Optimization 
for the Aforementioned Four Classifiers

In this section, the GS method was used to search the opti-
mal parameters (C, σ) for the KSVM and LS-SVM classifiers 
for each of the seven feature schemes. The search ranges 
were set as 1 × 10−6 to 1 × 105 for both parameters C and σ. 
Table 4 shows seven feature schemes and the corresponding 
optimal parameter combinations (C, σ) for the KSVM and 
LS-SVM classifiers on each scheme, respectively. In addi-
tion, in this study, both RaF and ORaF classifiers consisted 
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of 300 trees, each constructed by random feature selected 
from features, and the number of random features is the 
square root of the number of all features.

Table 4 shows that the KSVM classifier obtains the 
highest mean Acc of 0.9300, tested upon the training data 
set using sixfold cross validation when the parameters C 
and σ are set as 28,526.2000 and 0.0010, respectively. 

Similarly, for the LS-SVM, the highest mean Acc, 0.9390, 
of cross validation is yielded when the parameters C and 
σ are 24.5553 and 3.7322, respectively.

Fig. 1   The flowchart of evalua-
tion scheme Loading ECG data

Defining the different features schemes for algorithm evaluation

Step 1
Extracting the multiple features

Calculating evaluation indices for four classifiers 

Step 2
Data preprocessing for the features

Step 3

Comparing four classifiers under different feature schemes 

Conlcusions

Optimizing parameters of the KSVM and LS-SVM classifiers for 
each feature scheme

Table 3   Definition of the seven feature schemes

Scheme 
number

Features in scheme Number of 
features

Description

1 Waveform features: lead-fall, baseline drift and 
amplitude

7 Time-domain features

2 Waveform features and PSD features 15 Time-domain + frequency-domain features
3 Waveform features, PSD features and ApEn 19 Time-domain + frequency-domain + ApEn features
4 Waveform features, PSD features and PE 19 Time-domain + frequency-domain + PE features
5 Waveform features, PSD features and ELZC 19 Time-domain + frequency-domain + ELZC features
6 All features except ApEn 23 Time-domain + frequency-domain + PE + ELZC features
7 All features 27 Time-domain + frequency-domain + ApEn + PE + ELZC features
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3.2 � ECG Signal Quality Assessment Results Using 
the Training Data Set

This section reports the results of ECG signal quality assess-
ment for the aforementioned seven feature schemes defined 

in Sect. 2.4, using the four classifiers, i.e. the KSVM, LS-
SVM, RaF and ORaF. The parameter settings for KSVM 
and LS-SVM classifiers are provide in Table 4 for each of 
the seven feature schemes. The parameters of the RaF and 
ORaF classifiers are described in Sect. 3.1. Table 5 details 
the classification results for the training data set (i.e. set A) 
using sixfold cross validation.

Table 5 shows that the KSVM classifier yields the low-
est classification accuracies of 90.00, 89.80, 92.30, 92.80, 
92.40 and 92.60% for feature schemes 1–5 and 7, respec-
tively, using the training set under sixfold cross validation. 
The exception is scheme 6, for which the KSVM classifier 
outperforms ORaF. The LS-SVM classifier shows steady 
performance and yields the second highest accuracies of 
93.60, 93.66, 93.90, 93.89, 93.60 and 93.70% for schemes 2, 
3, 4, 5, 6 and 7 respectively, and obtains the highest accuracy 
on scheme 1. The RaF classifier achieves the best perfor-
mance for nearly all schemes. It not only yields the high-
est accuracies on feature schemes 2, 3, 4, 5, 6 and 7 but 
also yields the highest accuracy of 95.41% among all seven 

Table 4   The results of optimized parameter combinations for the 
KSVM and LS-SVM classifiers for each of the seven feature schemes 
using GS method on the train data set

Feature 
schemes

LS-SVM KSVM

C σ C σ

1 1265.4840 1.7361 16384.0000 0.2500
2 362.3092 1.4292 16384.0000 0.2500
3 3.9855 1.2855 4.0000 0.1436
4 0.1769 0.8153 0.2500 2.2974
5 0.7064 1.8205 36.7583 0.0090
6 24.5554 3.7322 28526.2000 0.0010
7 41.5410 11.9837 111.4300 0.0017

Table 5   Classification results 
of cross validation using 
four classifiers on feature 
schemes 1–7

Scheme Method Results on training set Results on test set

Se (%) Sp (%) Acc (%) Acc (%)

1 KSVM 57.89 ± 4.85 99.09 ± 1.07 90.00 ± 2.26 89.00
LS-SVM 79.90 ± 6.23 97.55 ± 0.69 93.60 ± 0.68 91.40
RaF 80.64 ± 4.92 95.86 ± 1.17 92.50 ± 1.21 89.80
ORaF 80.35 ± 6.99 97.02 ± 0.58 93.22 ± 2.24 90.80

2 KSVM 57.29 ± 6.08 99.36 ± 1.34 89.80 ± 2.23 89.20
LS-SVM 80.08 ± 3.55 97.28 ± 1.23 93.60 ± 1.02 91.40
RaF 90.51 ± 7.56 96.80 ± 2.29 95.41 ± 1.89 89.40
ORaF 68.17 ± 7.66 98.73 ± 1.44 91.90 ± 1.78 91.00

3 KSVM 72.75 ± 11.51 98.07 ± 1.18 92.30 ± 1.42 91.20
LS-SVM 79.77 ± 5.79 97.54 ± 0.85 93.66 ± 1.73 91.60
RaF 89.40 ± 3.74 96.63 ± 1.29 95.10 ± 1.06 90.20
ORaF 79.02 ± 5.34 97.53 ± 1.42 93.29 ± 2.64 91.00

4 KSVM 72.98 ± 5.48 98.57 ± 1.30 92.80 ± 2.09 91.60
LS-SVM 80.66 ± 7.95 97.67 ± 1.10 93.90 ± 1.58 91.80
RaF 87.13 ± 4.74 97.26 ± 1.98 94.99 ± 1.60 91.20
ORaF 78.22 ± 5.61 98.21 ± 0.69 93.60 ± 1.36 91.60

5 KSVM 75.18 ± 3.05 98.11 ± 1.19 92.40 ± 2.17 91.80
LS-SVM 81.47 ± 6.88 97.64 ± 1.46 93.89 ± 2.64 92.00
RaF 88.38 ± 5.93 96.35 ± 2.06 94.59 ± 1.53 91.40
ORaF 78.55 ± 11.19 98.03 ± 1.15 93.70 ± 1.78 91.40

6 KSVM 73.84 ± 8.31 98.29 ± 1.49 93.00 ± 2.18 92.00
LS-SVM 77.94 ± 6.46 98.09 ± 2.00 93.60 ± 1.69 92.20
RaF 86.54 ± 4.62 97.04 ± 1.26 94.70 ± 1.22 91.00
ORaF 76.76 ± 5.24 97.43 ± 1.33 92.90 ± 1.25 92.00

7 KSVM 71.46 ± 4.95 98.44 ± 0.94 92.60 ± 2.80 90.20
LS-SVM 76.35 ± 6.47 98.59 ± 1.22 93.70 ± 1.66 91.60
RaF 87.08 ± 7.60 96.86 ± 1.06 94.90 ± 1.70 91.60
ORaF 75.84 ± 6.62 97.66 ± 0.82 93.00 ± 1.21 92.00
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feature schemes. The classification accuracies from ORaF 
are higher than those from KSVM but lower than those from 
LS-SVM for all schemes except scheme 6.

Figure 2 shows the comparison of the classification accu-
racies of the four classifiers on the training and test data 
sets. For the test data, LS-SVM yields optimal accuracy 
rates for all schemes except scheme 7; the highest accuracy, 
92.20%, among all feature schemes is obtained on scheme 6. 

Although the RaF classifier has good performance on the 
training set, the accuracies from RaF on the unseen test 
data set are relatively lower than those of the other three 
classifiers, especially for schemes 3, 4 and 6. Conversely, 
the KSVM classifier has poor performance on the train-
ing set in comparison with the other classifiers; however, 
it obtains better classification performance, with values of 
91.20, 91.60, 91.80 and 92.00% for schemes 3, 4, 5 and 6, 

Fig. 2   Classification accuracy 
of the four classifiers. a Acc 
obtained for the training data 
set(i.e., set A), b Acc obtained 
for the test data set (i.e., set B), 
respectively
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respectively. The classification performance of the ORaF 
classifier is relatively stable when tested with the unseen test 
data set, and ORaF yields the second highest accuracies of 
90.80, 91.00, 91.60, 92.00 and 92.00% for schemes 1, 2, 4, 
6 and 7, respectively.

Figure 3 shows the differences in classification accura-
cies between the training and test data sets, with the aim 
of comparing the generation capabilities of the four classi-
fiers on different feature schemes. Figure 3 indicates that the 
KSVM algorithm has the smallest performance differences 
compared with the other classifiers on all feature schemes 
except schemes 6 and 7, and RaF yields the highest differ-
ences for all schemes. By contrast, the differences of ORaF 
for schemes 2, 4, 6 and 7 are smaller than those of LS-SVM, 
especially for schemes 6 and 7.

4 � Discussions

In this study, we performed the aforementioned four classi-
fiers on 7 feature schemes aiming to not only compare per-
formance of the classifiers but also evaluate effectiveness of 
the nonlinear features, especially the ELZC feature, on ECG 
quality assessment.

The results indicate that two types of nonlinear feature, 
i.e., PE and ELZC, can help to improve classification per-
formance of the aforementioned four classifiers because 
classification accuracies of nearly all the four classifiers 
on schemes 4 and 5 are comparatively higher than those of 
schemes 1, 2 and 3 on both training and test data sets. Fea-
ture scheme 1 purely relies on waveform features therefore 
it usually leads to vague and inaccurate conclusions. This is 
due to the fact that waveform of considerable amount poor 
quality ECG signals is difficult to be distinguished from that 
of high quality ECG signals that can be used for clinical 
purpose. Similarly, frequency bandwidths of ECG signals 
and noise tend to overlap, thus the frequency features can-
not reflect the inherent properties of ECG signals. This in 
turn results in comparatively lower classification accuracies 
or poor generalization ability of the second feature scheme. 
The nonlinear features can reflect inherent properties within 
ECG signals since ECG is also nonlinear time series. In 
contrast, PE and ELZC can discern randomness and non-
linear complexity within ECG signals more explicitly than 
ApEn, so the classification accuracies from schemes 4 and 
5 are relatively higher than those generated by scheme 3. 
The results also indicate that the ELZC and PE have similar 
abilities to reflect nonlinear properties within ECG signals, 
owing to the fact that accuracies on scheme 4 and 5 exhibit 
different trends for different classifiers.

The combinations of nonlinear features also do not always 
guarantee the performance improvement of signal quality 
assessment, thus the accuracies on schemes 6 and 7 exhibit 

fluctuation instead of increase. In fact, PE features of some 
ECG recordings and their ELZC features yield information 
redundancy or overlap, which in turn causes a decrease in 
classification performance.

The results indicate that the classical KSVM yields the 
worst classification results on training data set using sixfold 
cross validation, and the results from LS-SVM are better than 
those of KSVM. In the KSVM method, the constraints are 
inequality, and support vectors near a separating hyperplane 
can dramatically impact the calculation of the hyperplane, 
whereas the vectors that are far away from the hyperplane 
have little influence to determination of the hyperplane. So 
classification performance of the classical KSVM method is 
easy to be weakened when the classifying boundary between 
two classes is not obviously, or even vague. Therefore, the 
support vectors are hard to be determined. In fact, the data of 
ECG quality assessment are usually the raw ECG signals that 
have not been processed and contain a lot of random com-
ponents and noises, and so the boundary between acceptable 
and unacceptable ECG recordings is not obvious. This could 
be the reason why classification performance of the classical 
KSVM is relatively weak than that of the LS-SVM method. 
For the LS-SVM, its constraints are equality, and whether near 
or far from the separating hyperplane. As mentioned above, 
the vectors impact the calculation of the hyperplane. So per-
formance of the LS-SVM method could be weakened when 
the boundary of two classes is clear, whereas its performance 
is improved when the boundary is vague. This is owing to 
the fact that the vectors that are the more far away from the 
hyperplane have more obvious class labels so that they can 
more accurately calculate the separating hyperplane. It is why 
the performance of the LS-SVM method is higher than that of 
the classical KSVM.

The RaF method yields the highest accuracy in each feature 
scheme for the training data set using cross validation except 
for scheme 1, but the accuracies are relatively lower for the 
unseen test set. The results indicate that generalization abil-
ity of the RaF is limited. In fact, Fig. 3 exhibits that the RaF 
method has the worst generalization performance. A possible 
cause of such poor generalization ability is that each tree is 
constructed by randomly selected features in the RaF method, 
and the random selection cannot ensure the construction of an 
effective RaF. Moreover, Fig. 3 indicates the generalization 
ability of SVM, i.e., KSVM and LS_SVM is higher than that 
of RaF. In fact the KSVM has the best generalization perfor-
mance among the four classifiers.

Furthermore, in comparison to RaF, the ORaF uses SVM 
to optimize decisions for constructing trees instead of random 
selection, so the ORaF method improves classification per-
formance for the test set and exhibits a better generalization 
ability than that of RaF. However, accuracy rates of ORaF 
for the evaluation of the test set are comparatively lower than 
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those of LS-SVM, which further strengthens the robustness 
of LS-SVM.

5 � Conclusions

The aforementioned four classifiers are not able to yield the 
satisfied classification results when they are performed on 
waveform and frequency features. However the proposed 
nonlinear complexity feature ELZC exhibits the same better 
capability as PE than waveform and frequency features to 
enhance the performance of assessing the quality of mobile 
ECG recordings of the four classifiers because classification 
accuracies of nearly all the four classifiers on schemes 4 and 
5 are comparatively higher than those of schemes 1, 2, 3 
on both training and test data sets. Similarly, the features 
ELZC also exhibits a satisfied performance on enhancing 
generation capacities of most of the four classifiers except 
the ORaF classifier than the features PE because the differ-
ence of classification accuracies between the training and 
test data sets on scheme 5 is lower than that on scheme 4. 
So the proposed nonlinear complexity feature ELZC is more 
help to improving classification accuracies of the classifiers 
especially the LS-SVM classifier than the feature PE. Actu-
ally the feature ELZC and the LS-SVM classifier can yield 
the highest classification accuracy 92.00% on test data set 
among the features schemes 1, 2, 3, 4, and 5 with keep-
ing a relatively lower difference of classification accuracies 
between the training and test data sets.

A total of 27 features are derived from waveform, power 
spectrum and non-linear characters of ECG signals, pro-
viding comprehensive information for signal quality. For 
the evaluation of the test data containing 500 10 s mobile 
ECG recordings, results showed that the LS-SVM classifier 
achieves the best classification accuracy rate of 92.20% and 
outperforms other classifiers, i.e. KSVM, RaF and ORaF, 
consistently.
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