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Abstract 

Synchronization provides an insight into mechanisms 
underlying the interaction among bivariate physiological 
signals where their coupling is not known a priori. Cross-
sample entropy (C-SampEn) has been used to quantify 
their synchronization. However, traditional C-SampEn 
has a poor statistical stability because a rigid decision 
rule is applied to define the similarity between two 
vectors. In this study, a fuzzy membership function was 
implemented to redefine the decision rule in C-SampEn 
with its performance evaluated using simulated and real 
cardiovascular coupling signals (RR interval and pulse 
transit time sequences from 10 normal subjects and 10 
heart failure patients).  

Simulation results verified the decrease of both C-
SampEn with increasing coupling degree. The analysis of 
cardiovascular coupling signals demonstrated a 
significant difference between normal and heart failure 
patients (normal 1.17 ± 0.09 vs. heart failure 1.02 ± 0.10, 
P<0.01) with the improved C-SampEn, but not the 
traditional C-SampEn. Our improved C-SampEn provides 
a better understanding of the different cardiovascular 
coupling between normal subjects and heart failure 
patients. 

1. Introduction

Measuring synchronization between two physiological 
systems has attracted great interest [1-3]. Traditionally, 
the cross-correlation in the time domain as well as the 
cross-spectrum or coherency in the frequency domain 
have been used to test their synchronization [4]. However, 
they are not suitable for characterizing real physiological 
signals that are non-stationary and inherently nonlinear. 
Recently, entropy-based measures, such as the typical 
approximate entropy and sample entropy, have been 
widely used for the analysis of physiological time series 
to explore their inherent complexity [5]. And their 
generalized forms, cross-approximate entropy (C-ApEn) 
and cross-sample entropy (C-SampEn) [6], have been 
used to test synchronization for physiological time series. 

In comparison with C-ApEn, C-SampEn could reduce 
bias and show better relative consistency than C-ApEn [6]. 

However, both C-ApEn and C-SampEn have poor 
statistical stability due to the use of binary classification 
based on the Heaviside function. Cross-fuzzy entropy (C-
FuzzyEn), as the variation of C-SampEn [7], is based on 
the concept of Zadeh’s fuzzy set theory, and requires 
fewer parameters and shorter data lengths, and thus 
provides relatively robust results. However, removing the 
local baseline during the algorithm implementation may 
produce inaccurate results for some slow signals because 
it neglects the global trend. To solve this issue, we 
recently reported a fuzzy measure entropy that combined 
both the local similarity and the global similarity [8, 9]. 

The aim of this study was to improve the C-SampEn 
by redefining the decision rules between vector 
similarities. The performance of our improved C-SampEn 
was evaluated using simulated and real cardiovascular 
coupling signals.  

2. Methods

2.1.  Cross-sample entropy 

The calculation process of C-SampEn is summarized 
as follows [6; 10]: 

For two normalized sequences u(i) and v(i), 1≤i≤N, the 
vector sequences are: 
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The distance between two vectors is then defined as: 
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2.2.  Improved cross-sample entropy 
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Traditional C-SampEn has a rigid decision rule for the 
vector similarity because it is decided from the Heaviside 
function that is described as follows: 
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With this decision rule, only the vectors within the 
boundary are treated as similar vectors, while those 
outside the boundary are neglected. This two-state 
classifier can lead to instability of C-SampEn . 

The fuzzy membership function has been reported to 
replace the Heaviside function [7; 8]. It is described as: 
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However, this membership degree of two vectors has 
an immediate decline if their distance is more than 0, 
which is too sensitive to the noise. 

In this study, we redefined the published fuzzy 
membership function to: 
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where r is the threshold parameter and   denotes the 
range that regards the vectors as absolutely similar.  

Compared with the reported fuzzy membership 
function, the decision rule for vector similarity from our 
modified function has more robust ability and could be 
immune to slight noise. Figure 1 shows the comparison 
between the above three decision rules.  
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Figure 1. Three decision rules for vector similarity: black 
dotted line is the Heaviside function, blue dash line is the 
fuzzy membership function and red solid line is the 
improved fuzzy membership function. 

 

2.3.  Evaluation experiments 

The performance of the traditional and improved C-
SampEn was evaluated on cardiovascular coupling signals 
and their simulated data. Cardiovascular coupling signals 
were the sequences of the RR interval and corresponding 

pulse transit time (PTT, from the R wave peak of the ECG 
to the foot of the corresponding pulse). They came from 
10 normal subjects (58±7 years) and 10 heart failure 
patients (60±6 years). The subjects in two groups were 
matched by age. Electrocardiograms (ECG) and radial 
pulses were simultaneously recorded for more than 5 min 
to obtain the sequences of RR interval and PTT. The 
initial 300 beats were used for the analysis. Figure 2 
shows an example of the two sequences from a normal 
subject. To reveal and compare different coupling 
relationships between RR interval and PTT sequences, 
simulated cardiovascular coupled data were also produced. 
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Figure 2. Example of the acquired RR interval and PTT 
sequences (Unit: ms). 

 
1) Simulated cardiovascular coupled data 1 from one 
normal subject 

Coupling signal 1 was set as a real RR sequence (A in 
Figure 3) and coupling signal 2 was set as different types 
of PTT sequences (B1-B5 in Figure 3). 

B1: Real PTT; a real PTT sequence. 
B2: Constant PTT; a constant sequence, denoting a 

constant time delay of pulse from heart to peripheral 
artery. 

B3: Constant PTT plus RR; a repeat of the coupled RR 
sequence, denoting perfect coupling . 

B4: Constant PTT plus noise;the Gaussian noise 
denotes the most irregular coupling. 

B5: Constant PTT plus nonlinear noise signal; a 
Logistic sequence iterated by 

( 1) ( ) (1 ( ))x n w x n x n     , where the initial value x(0) 

is between 0 and 0.9 and w is 3.8 [8]. This sequence 
denotes the most complex coupling. 

2) Simulated cardiovascular coupled data 2 
Coupling signal 1 was set as a real RR sequence and 

coupling signal 2 was set as the same RR sequence after 
normalization and subtraction of mean, but with a 
percentage of elements randomly replaced by Gaussian 
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noise (B4 in Figure 3) or nonlinear signals (B5 in Figure 
3). The replaced proportions were set as 20%, 40%, 60% 
and 80% respectively. For each proportion, 20 realizations 
were generated and used as the final entropy values: 
mean±standard deviation (SD). 

3) Real cardiovascular coupled data 
Coupling signal 1 and 2 were the real RR and PTT 

sequences from all 20 subjects. For each subject, both 
traditional and improved C-SampEn measurements were 
applied to the two sequences with the mean±SD 
calculated across all subjects. Student’s t-test was used to 
compare the statistical differences between normal 
subjects and heart failure patients. Statistical significance 
was set a priori at P<0.05. 

  
3. Results and discussion 

Figure 3 shows the results from one subject for 
traditional and improved C-SampEn for the RR and 
different types of PTT sequences. For both cross entropies, 
the type of constant PTT plus nonlinear noise signal gives 
the maximum value (2.10 and 1.34 respectively). 
Constant PTT plus noise also gives relative high entropy 
values (1.95 and 1.21). Constant PTT gives the minimum 
value for improved C-SampEn whereas constant PTT plus 
RR gives the minimum value for the traditional one. The 
two entropy values (2.00 and 1.14) from the real 
cardiovascular coupled data are lower than that with 
nonlinear signals but higher than those exhibiting 
unchanged (1.56 and 0.64) and perfect coupling (1.16 and 
0.87) signals.  

 

Figure 3. The results from simulated cardiovascular 
coupled data 1 (Vertical axes is in ms). 

The left two panels in Figure 4 show the traditional C-
SampEn results for the simulated cardiovascular coupled 

data 2, in which a percentage of elements of one coupled 
RR sequence were randomly replaced by Gaussian noise 
(A1) or nonlinear signals (A2). The right panels show the 
corresponding results for the improved C-SampEn: (B1) 
for Gaussian noise and (B2) for nonlinear signal. The 
synchronization of the two coupled sequences decreased 
with the increase of the proportions of Gaussian noise or 
nonlinear signals. The results from the traditional and 
improved C-SampEn changed as expected. 

 
Figure 4. The results from simulated cardiovascular 
coupled data 2. 

Figure 5 shows the results from both the traditional and 
improved C-SampEn for normal and heart failure subjects. 
For both C-SampEn, with the parameters set as: 
embedding dimension m=2, threshold value r=0.2 and 
sequence length N=300. For improved C-SampEn, 
parameter   was 0.05. Using the traditional C-SampEn 
measurement on RR and PTT sequences, there was no 
significant difference between the two groups (normal 
2.03±0.10 vs. heart failure 1.97±0.08, P=0.13). However, 
with the improved C-SampEn, they were significantly 
different (normal 1.17 ± 0.09 vs. heart failure 1.02 ± 0.10, 
P< 0.01).  

 
4. Conclusion 

This study developed a modified C-SampEn to 
improve the poor statistical stability of traditional C- 
SampEn. Similarly to the traditional C-SampEn, 
improved C-SampEn is the negative natural logarithm of 
the conditional probability that two sequences of length N, 
having similar patterns for m points within a boundary r, 
will also repeat for m+1 points. However, unlike the 
traditional C-SampEn, where the decision rule for vector 
similarity is based on the Heaviside function, the 
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Figure 5. Results (mean±SD) of the traditional C-SampEn 
(A) and improved C-SampEn (B) for normal and heart 
failure groups.  
‘NS’: no significant difference; ‘*’: P<0.01.  
 
improved C-SampEn uses a piecewise function to 
redefine the decision rule. 

Although the results from simulated cardiovascular 
coupled data 2 showed that both C-SampEn decreased 
monotonically with increasing coupling degree c, the 
analysis of cardiovascular coupling signals demonstrated 
significant difference between normal and heart failure 
patients were found by the improved C-SampEn, but not 
the traditional C-SampEn. Our improved C-SampEn 
provides a potential solution to understand different 
cardiovascular coupling between normal subjects and 
heart failure patients.  

The improved C-SampEn could also be applied to 
quantify the synchronization of other bivariate 
physiological sequences with short data lengths.  
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