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Abstract 

Considering that the uncertainty noise produced the 

decline in the quality of ECGs, this paper proposed a 

real-time signal quality assessment method for ECGs 

collected using mobile phones. The method defines four 

“flags” to denote different type problems duo to the poor 

quality of ECGs: using flag1 to detect if there is a 

misplaced electrode; using flag2 to detect if there is a 

huge impulse; using flag3 to denote if there is a strong 

Gauss noise; and using flag4 to denote if there is a 

detector error of R-wave peaks by the template matching 

method. Then based on the values of four ”flags”, we 

calculate the single signal quality index (SSQI) for each 

ECG and the integrative signal quality index (ISQI) for 

twelve-lead ECGs. The range of ISQI is between 0 and 12 

inclusively. High value of ISQI means good quality of the 

ECGs. Each ECG record would be assigned to two 

groups according to ISQI, acceptable and unacceptable 

group. We define two indices, Sensitivity and Specificity, 

to evaluate the validity of this paper’s method and the 

results are 90.67% and 89.78% respectively. 

 

1. Introduction 

Recent years, using the mobile phone technology to 

collect and transmit electrocardiograms (ECGs) from rural 

patients for remote analysis by cardiologists at a city 

hospital has achieved rapid development. This technology 

is driven from the energetic efforts of Sana group and 

PhysioNet at MIT [1]. This has also inspired this year’s 

PhysioNet/CinC challenge. However, noise and artefacts 

are inevitable in ECGs, and these problems contaminate 

the ECG signal quality. Poor ECG signal quality may 

induce an increased number of false alarms, degraded 

diagnostic performance, and an increased distraction and 

workload for clinical staff [2]. It is important therefore to 

establish quantitative method that can be used to 

demonstrate signal quality problem, especially for the real-

time assessment.   

Some assessment techniques of ECG signal quality 

have been proposed. The typical ones were summarized as 

follows: Allen J and Murray A mainly used the frequency 

measures to assess the ECG signal quality and effectively 

reduced the false alarms in coronary care unit (CCU) [2]; 

He T et al used independent component analysis (ICA) to 

enhance ECG signal quality by reducing the noise or 

artefacts [3]; Li Q et al proposed a robust heart rate 

estimation method by using signal quality indices and a 

Kalman filter and improved ECG signal quality in the 

intensive care unit (ICU) [4].  

However, none of them was initially developed for 

mobile phone application. Besides, when using the mobile 

phone technology, the validity and reliability of ECG 

signal quality assessment are facing unprecedented 

challenge. The aim of this work was to develop a real-time 

signal quality assessment method for ECGs, which could 

easily implant on a mobile device. This method could tell 

whether or not the ECG signal is acceptable for subsequent 

analysis and tell why if it is unacceptable.  

 

2. Methods 

The challenge data are standard twelve-lead ECGs 

(leads I, II, II, aVR, aVL, aVF, V1, V2, V3, V4, V5, and 

V6) with full diagnostic bandwidth (0.05 through 100 Hz). 

The leads are recorded simultaneously for ten seconds [1]. 

We used training data (i.e. Set A) to design our algorithm 

since the reference quality assessments of Set A were 

provided to the participants. Different problems (such as 

misplaced electrodes, external interference, poor skin-

electrode contact, and artifact resulting from patient 

motion) will occur in the original ECGs. Firstly, we 

classified these problems into four different types: 1) the 

straight line duo to the misplaced electrode; 2) huge 

impulse leading to the unconspicuous observation of other 

signals; 3) strong Gaussian noise; and 4) detector errors of 

R-wave peaks duo to the noise and artifact. These detector 

errors can be false negative (FN) when a real beat is 

missed caused by a low amplitude R-wave or strong noise, 

or false positive (FP) when a false beat is detected due to 

noise or a high amplitude T-wave [5]. Then we defined 

four “flags” to respectively denote these problems duo to 

the poor quality of ECGs. The meanings of the four 

“flags” are shown in Table 1. After that, the algorithms 

for detecting each of the four problems, i.e. calculating 

the values of “flags”, were proposed. So every ECG lead 

has four “flags” values, which imply the ECG signal 

quality. We could use the “flags” to calculate the single 
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signal quality index (SSQI) for each lead ECG. SSQI 

denotes that if the quality of the single ECG lead is 

adequate or not. At last, the integrative signal quality 

index (ISQI) for twelve-lead ECGs were calculated after 

SSQIs of all twelve ECGs obtaining. The flow chart of the 

method is shown in Figure 1. 

Table 1. Meanings of the four “flags” 

Values 
Flags Meaning for the ECG 

1 0 

Flag1 Is a straight line? Yes No 

Flag2 Includes a huge impulse? Yes No 

Flag3 Includes a Gaussian noise? Yes No 

Flag4 Includes a detector error? Yes No 
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Figure 1. The flow chart of the method 

 

2.1.    Algorithm for detecting straight line 

 Because each ECG lead is sampled at 500 Hz and lasts 

for ten minutes, so the length of the ECG is 5000. Let 

 denotes an ECG recording. Then 1 2 5000[ , , , ]X x x x 
X is divided in to five segments without overlap. The 

segment 1
i

X  is defined as follows: 

1000( 1)1000 1 1000 21 [ , , , ] 0,1, , 4
ii i i x

X x x x i    .     (1) 

Subsequently, we calculated the differential sequence 

 for each i
Y 1

i
X  and let 

i
  denotes the standard deviation 

(SD) of . Set the threshold . If 
i

Y 1
line

r 
i

  is lower than 

, it means that the amplitude of this segment 
line

r 1
i

X is 

almost changeless and this is most likely the misplaced 

electrode. Let  denotes the number that line
N

i
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than . The flag1 is defined as follows: 
line

r

line
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flag1
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line
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.                           (2) 

Figure 2 shows the detections for straight line. The 

upper panel of Figure 2 (a) is ECG with misplaced 

electrodes and the one of (b) is normal ECG. The lower 

panels of Figure 2 are i
 results responding to the ECG in 

the upper panels. If the misplaced electrodes happen, the 

few fluctuations. So i

ECG recording will almost be a straight line and it has 

  is lower than 
line

r , while the result 

of normal ECG is hig r than 
line

r . The lue of flag1 

accurately indicates this situation. 
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Figure 2. The det  for straight line, (a) ECG with 

 

.2.    Algorithm for detecting huge impulse 

is 
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e
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misplaced electrodes, (b) normal ECG. 
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Figure 3 shows the results of ECG with huge impulse 

(upper panel) and ECG removing huge impulse (lower 

panel). The segment corresponding to one element is 

higher than 
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Figure 3. The ECG with huge impulse (upper panel) and 

ECG removing huge impulse (lower panel). 

 

358



2.3.    Algorithm for detecting Gaussian noise 

is 

In this section, we used two methods to detect if there 

strong Gaussian noise consists in ECG recording. One 

method is the power spectrums using AR model [6]. The 

other is the complexity analysis using sample entropy 

(SampEn) [7]. When using AR mode, the power 

spectrums of X  is divided into two major frequency 

components: si nal-frequency (SF) component (0.05 

through 40 Hz) and noise-frequency (NF) component 

(more than 40 Hz). If the noise becomes strong, the NF of 

g

X  will enlarge, while the ratio of SF/NF will decline. At 

 same time, the complexity of the X  will also decline 

when the strong noise occurs, and the egressive SampEn 

denotes this change.  

The ECG recordin

 d

g is divided in to ten segments 

wi

s noi

3
.                             (5) 

Figure 4 shows the results of SF/NF and SampEn for 

an

2.4. Algorithm for detector error 

s was came 

fro

thout overlap using the same method of section 2.2. For 

each segment, the SF/NF and SampEn are calculated. The 

threshold of SF/NF set to be 1.5 and the threshold of 

SampEn set to be 0.7. The lower SF/NF or SampEn 

means the responding ECG segment maybe includes 

strong Gauss noise. The segment will be identified as a 

strong Gauss noise as long as both SF/NF and SampEn 

are lower than each threshold. Let noiseN  denotes the 

number of the segment with strong Gaus se. The flag3 

is defined as follows: 

1 3
flag3

0

noise

noise

N

N

  
 ECG with strong Gauss noise (Figure 4 (a)) and a 

normal ECG (Figure 4 (b)). In each figure, the upper 

panel is ECG recording, the middle panel is the result of 

SF/NF, and the lower panel is the result of SampEn. 

 

The method of detecting the R-wave peak

m our recent work [8], which proposed an online 

detection procedure for R-wave peaks based on template 

matching. When R-wave peaks were detected, the fore-

and-aft R-wave peaks formed the RR interval. If the 

signal quality is poor, the RR interval usually contains 

some detector errors (false negative and false positive, i.e. 

FN and FP). So it provides another approach to assess the 

ECG signal quality by analyzing the detector error of R-

wave peaks. In this study, we use the impulse rejection 

filter (IRF) introduced by McNames et al (2004) to detect 

the errors in RR intervals [9]. The threshold of IRF is set 

to 2 just as the recommended value in [9]. Let IRFN  

denotes the number of detector errors. The flag  

defined as follows: 

4 is

0
.                  (6)    

Figure 5 shows the results of detector error for an ECG 
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In each figure, the upper panel is ECG recording, the 

middle panel is the RR intervals, and the lower panel is 

the result of IRF. It can be seen clearly that the value of 

IRF is higher than threshold 2 in the position of FN or FP. 

So IRF method can effectively detect the detector error in 

RR intervals. 
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Figure 4. The results of the SF/NF and SampEn for, (a) an 

ECG with strong Gauss noise, and (b) a normal ECG. 
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Figure 5. The ECG with huge impulse (upper panel) and 

 

ECG removing huge impulse (lower panel). 
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2.5.    Single signal quality index (SSQI) 

SQI of 

ea

Using the flags calculated in section 2.1 to 2.4, S

ch ECG lead can be defined as follows: 

SSQI 1 1 0.2 2 2 3+flag flag flag 4flag      ′ ″ , (7) 

where  is a parameter and is calculated as follows: 

 0.05 ( )impulse noise IRFN N N     .              


(8) 

 

.6.    Integrative signal quality index (ISQI) 

, 

th

.                   (9) 

If the ISQI of twelve-lead ECGs is mo

EC

3. Results and discussion 

u  the validity o

me

2

When the twelve SSQI of each ECG lead are obtained

en the ISQI for the twelve-lead ECGs is determined as 

follows: 
12

1
ISQI max(SSQI ,0)

ii
re than 10, the 

Gs are identified as the acceptable ECGs. Otherwise, 

the ECGs are identified as the unacceptable ECGs. 

 

We se the ECGs of Set A to test f the 

thod proposed in this paper. There are 773 acceptable 

ECGs and 225 unacceptable ECGs in all. For the 

convenience of the expression, we define four symbols to 

denote the identification results. Let 1A  denotes the 

amount that the unacceptable ones are fals  identified as 

the acceptable ones; 2

ely

A  denotes the amount that the 

unacceptable ones are truly identified as the unacceptable 

ones; 1N  denotes the amount that the acceptable ones are 

truly i tified as the acceptable ones; 2N  denotes the 

amount that the acceptable ones are falsely identified as 

the unacceptable ones. Afterward, two indices, Sensitivity 

and Specificity, are defined to evaluate the validity of the 

method as in equations (10) and (11). The results of 

classification and indices are shown in Table 2. As can be 

seen from Table 2, Sensitivity and Specificity are 

respectively 90.67% and 89.78%. The method proposed 

in this paper exhibits a fine performance for the ECG 

signal quality assessment. 

den

2Sensitivity A 100%
( 1 2)A A

 ,              (10) 

1Specificity 100%
1 2

N
N N

  .               (11)

Table 2. The results of classification and indices 

 

Classification  Indices (%) 

A1 N2 Sensi ficityA2 N1  tivity Speci

21 204 694 79  90.67 89.78 

 

4. Conclusions 
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