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1.  Emotion: definition, type and mechanism

The word ‘emotion’ was brought about by Thomas Brown in the early 1800s, but it was not widely recognized 
until about 30 years later when its modern concept emerged (Smith 2015). It is accepted as a general term for 
a series of subjective cognitive experiences, which represents the psychological and physical states produced 
by multiple senses, thoughts and behavior (Frijda 2008). Emotions can guide our decisions, further promote 
adaptive responses and their original roles were to motivate adaptive behavior that would have contributed to 
the survival of humans (Damasio 2003). The detection and regulation of emotions and disorders of emotion are 
thus essential to maintaining mental health and social functioning (Eisenberg 2001).

Discrete and dimensional are two approaches for emotional classification. Discrete emotion emphasizes the 
specificity and generality of emotional experience and expression and tends to ignore the global internal mech­
anism of the emotional process (Norman et al 2014). Green (1992) considers that emotions can be intuitively 
divided into positive and negative types. Positive emotions may be considered as any feeling where there is a lack 
of negativity, such that no pain or discomfort is felt, and predict increases in both resilience and life satisfaction 
(Cohn et al 2009), while negative emotions are related to the opposite. Many works suggest that there are several 
basic human emotions that can further be distinguished into different subcategories, as described by Shaver et al 
(1987) (see table 1). Some of the generally accepted basic emotions are happiness, surprise, fear, anger, disgust 
and sadness (Adolphs 2006). Recent research at the University of Glasgow investigated how the muscles in the 
face move when expressing a variety of emotions, and supports fewer emotion categories: four basic emotions of 
happiness, fear/surprise, disgust/anger and sadness (Jack et al 2014). Dimensional emotion focuses on the basic 
components of the emotional process (such as valence versus arousal and activation versus inhibition) without 
considering the discrete state. The circumplex model of affect proposes that all types of emotions are derived 
from two fundamental neurophysiological systems, relating to valence and arousal, respectively (Tseng et al 2014, 
Sharar et al 2016). Each emotion can be thought of as varying degrees of both valence and arousal (Valenza et al 

2014).
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Abstract
Background: Emotion is composed of cognitive processing, physiological response and behavioral 
reaction. Heart rate variability (HRV) refers to the fluctuations between consecutive heartbeat cycles, 
and is considered as a non-invasive method for evaluating cardiac autonomic function. HRV analysis 
plays an important role in emotional study and detection. Objective: In this paper, the physiological 
foundation of HRV is briefly described, and then the relevant literature relating to HRV-based emotion 
studies for the performance of HRV in different emotions, emotion recognition, the evaluation of 
emotional disorders, HRV biofeedback, as well as HRV-based emotion analysis and management 
enhanced by wearable devices, are reviewed. Significance: It is suggested that HRV is an effective tool for 
the measurement and regulation of emotional response, with a broad application prospect.
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Darwin put forward his theory of the nature of emotion in 1872 that the existence of emotional expression 
was the result of gradual adaptation during phylogenetic development (Darwin 1872). Twelve years later, James 
suggested that the subjective experience of certain emotions was the result of special changes in the somatic/
visceral and behavioral response (James 1884). Their opinions laid the foundation for the controversy relating to 
the nature of emotions and their relationship with the patterns of somatic/visceral activity. Despite the fact that 
the debate still exists, most experts support the thinking that emotions are composed of cognitive processing, 
physiological reactions and behavioral responses (Thayer et al 2002). Although the generation of emotion is not 
just the result of physiological changes, their high correlation has been widely accepted (Levenson 2003) and has 
been emphasized in early emotion theory. As is known, physiological reactions are controlled by the autonomic 
nervous system (ANS), which is further divided into the sympathetic nervous system with excitatory effect and 
the parasympathetic nervous system with inhibitory function. These two types of nerves maintain mutual bal­
ance and a low degree of physiological arousal in the normal physiological state. When the individual is under 
physiological or psychological stress, the activity of the sympathetic nervous system becomes dominant, result­
ing in physiological arousal (e.g. an increase in heart rate, respiratory rate and pulse) to accommodate the pres­
sure. However, there are obvious individual differences in the equilibrium state of autonomic nervous activity, 
which will in turn lead to diverse emotions. Individuals are prone to be tensive and excitable when sympathetic 
nervous activity is dominant, and the reverse response, such as patience, will emerge when parasympathetic 
nervous activity is predominant. In the brain regions, activities of the amygdala, anterior cingulate cortex and 
temporal lobe cortex, which reflect the effects of emotions on heart rate, are enhanced by emotional processing 
(Critchley et al 2005). Among them, the central nucleus of the amygdala is the generator of emotional auto­
nomic activity, and the activity of the anterior cingulate cortex is related to the sympathetic autonomic response 
(Critchley et al 2013). Researchers also proposed another approach represented by the prefrontal cortex, which 
encoded stimulus information and transmitted it to other areas of the central autonomic nervous network, and 

Table 1.  Categories and subcategories of emotion.

Basic Secondary Tertiary

Love Affection Adoration, affection, love, fondness, liking, attraction, caring, tenderness, com­

passion, sentimentality

Lust Arousal, desire, lust, passion, infatuation

Longing Longing

Joy Cheerfulness Amusement, bliss, cheerfulness, gaiety, glee, jolliness, joviality, joy, delight, en­

joyment, gladness, happiness, jubilation, elation, satisfaction, ecstasy, euphoria

Zest Enthusiasm, zeal, zest, excitement, thrill, exhilaration

Contentment Contentment, pleasure

Pride Pride, triumph

Optimism Eagerness, hope, optimism

Enthrallment Enthrallment, rapture

Relief Relief

Surprise Surprise Amazement, surprise, astonishment

Anger Irritation Aggravation, irritation, agitation, annoyance, grouchiness, grumpiness

Exasperation Exasperation, frustration

Rage Anger, rage, outrage, fury, wrath, hostility, ferocity, bitterness, hate, loathing, 

scorn, spite, vengefulness, dislike, resentment

Disgust Disgust, revulsion, contempt

Envy Envy, jealousy

Torment Torment

Sadness Suffering Agony, suffering, hurt, anguish

Sadness Depression, despair, hopelessness, gloom, glumness, sadness, unhappiness, grief, 

sorrow, woe, misery, melancholy

Disappointment Dismay, disappointment, displeasure

Shame Guilt, shame, regret, remorse

Neglect Alienation, isolation, neglect, loneliness, rejection, homesickness, defeat, dejec­

tion, insecurity, embarrassment, humiliation, insult

Sympathy Pity, sympathy

Fear Horror Alarm, shock, fear, fright, horror, terror, panic, hysteria, mortification

Nervousness Anxiety, nervousness, tenseness, uneasiness, apprehension, worry, distress, dread
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even the brainstem, to produce a corresponding response (Ruizpadial et al 2011). Kreibig (2010) reviewed 134 
studies of the relationship between emotion and peripheral physiological responses, and demonstrated that dif­
ferent emotions were associated with specific ANS response patterns with variable overlap (see table 2).

2.  HRV: definition, mechanism and its relationship with emotion

Heart rate variability (HRV) refers to the fluctuations between consecutive heartbeat cycles. It is usually 
represented by the variation in RR intervals (the intervals composed of two adjacent R wave peaks of the cardiac 
cycle) collected from electrocardiogram (ECG) data (Task Force 1996) (see figure 1(A)), and any ECG lead 
signal is sufficient. A healthy heart corresponds to a certain inherent variability, and the loss of this variability 
is a precursor to heart damage (Goldberger 1990). The strict periodicity of the heart is not a sign of health, 
but is associated with pathological conditions (Pool 1989). Academic interest in cardiac rhythms may have 
emerged during the first half of the 18th century, and HRV, which can be used to characterize this rhythm, has 
attracted researchers’ attention since the 1960s (Hon et al 1965, Berntson et al 1997). Studies in psychology 
and neuroscience have confirmed that periodic changes in heart rate are induced by the continuous interplay 
between the sympathetic and parasympathetic nervous systems, that can be reflected by HRV measurement. 
Consequently, HRV is considered to be an indicator of the adaptation to changing circumstances by the heart 
(Rajendra Acharya et al 2006), and is used as one of the main non-invasive methods for autonomic nervous 
function assessment (Task Force 1996). An increasing amount of psychological research supports the link 
between HRV and emotional response.

Anatomically, the heart is innervated by the sympathetic and vagal nerves—the two branches of the ANS 
(Jindal et al 2016). The somata of sympathetic postganglionic neurons lies in the stellate ganglion or cervical 
sympathetic ganglion. Their axons (belonging to the adrenergic fibers) form the cardiac plexus to innervate 
various parts of the heart, especially the sinoatrial node—the primary pacemaker of the heart. There are also 
some distinctions in the regulation of cardiac function between the sympathetic nerves from the left and right 
sides, in that the sympathetic fibers dominating the sinus node to realize the control of the heart rate mainly 
come from the right side, and the dominant fibers at the atrioventricular junction mainly come from the other 
side. In contrast, the somata of parasympathetic postganglionic neurons are located in the heart wall. Their fib­
ers, which belong to cholinergic fibers, are shorter than sympathetic postganglionic fibers, and mainly innervate 
sinoatrial nodes, atrial muscle, the atrioventricular junction, etc. In addition, the two branches exhibit different 
functional and temporal effects of their variable signaling mechanisms. After being stimulated, the sympathetic 
nervous system plays a positive role in the heart by increasing heart rate, atrioventricular conduction and cardiac 
contractility, which is mediated by neurotransmission of norepinephrine. It exhibits a slow course of action on 
cardiac function, with the effect observed about a 5 s delay after stimulation and a final return to baseline about 
20–30 s later. However, the parasympathetic effect on cardiac function, mediated by acetylcholine neurotrans­
mission, is decreasing heart rate, atrioventricular conduction and cardiac contractility to ensure proper rest and 
energy reserves of the heart (Kawano et al 2003). Its effect on sinoatrial nodes appears rapidly, with the peak effect 

Table 2.  Modal responses of ANS activation components for several common emotions.

Emotion

ANS activation component

α-adrenergic β-adrenergic Cholinergic Vagal

Anger + + + —
Anxiety (+) (+) + —
Disgust mutilation (N) (+) + N

Fear + + + —
Sadness crying (+) / + N

Sadness non-crying (+) / — —
Sadness anticipatory (+) ± + (−)

Sadness acute / — — +N

Amusement +N (−) + +

Contentment (−) (−) — ±

Happiness (+) — +N —
Joy N ± +N (+)

Surprise / / (+) /

Note: ‘+’ indicates increase; ‘  −  ’ indicates decrease; ‘N’ indicates no change; symbols in parentheses indicate tentative response 

direction, based on fewer than three studies;and ‘/’ indicates not mentioned in the literature.
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observed after about 400 ms and a return to baseline within 1 s (Berntson et al 1997, Pumprla et al 2002), i.e. the 
peak response can be observed between two heartbeats. These significant differences between the effects of the 
two branches serve as the physiological basis of the low frequency (LF) band, which represents a mix of sympa­
thetic and parasympathetic tension in spectrum analysis of HRV (Task Force 1996). In the normal physiological 
state of a human, sympathetic and parasympathetic nerves are under the opposite and unified tension state with 
a predominance of vagal tension, and their net effect is instantaneous heart rate.

ANS is further regulated by the central autonomic network, which consists of partial cortical (medial pre­
frontal and insular cortices), limbic (anterior cingulate cortex, hypothalamus, central nucleus of the amygdala, 
bed nucleus of the stria terminalis) and brainstem (periaqueductal gray matter, ventrolateral medulla, parabra­
chial nucleus, nucleus of the solitary tract) regions (Appelhans et al 2006). The central autonomic network can 
integrate the inputs from the internal physiological conditions and the external dynamic environment, then 
flexibly adjust the physiological arousal (including arousal associated with emotional expression and regulation) 
in response to these changes and further realize the regulation of the emotional reaction. The outputs can reach 
the sinus node through the ANS and affect the heart rate. Therefore, HRV reflects the instantaneous output from 
the central autonomic network and the ability of an individual to regulate emotional expression by the activity of 
sympathetic and parasympathetic nerves (Thayer et al 2002).

Research on HRV has exponentially increased in the last 30 years. Methods for HRV analysis have undergone 
extensive development, with time-domain analysis (e.g. SDNN, RMSSD, PNN50), frequency-domain analy­
sis (e.g. LF, high frequency (HF), normalized LF, normalized HF, LF/HF) and non-linear analysis (e.g. entropy,  
Lyapunov exponent (LE), detrended fluctuation analysis (DFA), SD1 and SD2 from the Poincaré plot) (Rajendra 
Acharya et al 2006). These indices have been widely used as the marked features for emotion recognition (Shi 
et al 2017). Slight differences in signal preprocessing and abnormal rhythm detection during HRV sequence  
construction will lead to distinct results (Adriana et al 2018). To promote the repeatability of HRV indices, 
researchers have disclosed the toolbox and platform for HRV analysis, including methods for standardized data 
processing and index calculation, as well as a standard database (Adriana et al 2018, Behar et al 2018). The defini­
tions of the HRV indices and their possible relationships with emotion have been summarized in table 3. Figure 1 
demonstrates the HRV series under different emotional states (calm, fear, happiness, anger and sadness) from a 

healthy subject. The corresponding values of the HRV indices are exhibited in table 4.

Figure 1.  A construction of the an HRV series from the consecutive RR intervals in an ECG signal (A) and examples of the HRV 
series under calm (B), fear (C), happiness (D), anger (E) and sadness (F) conditions from a healthy subject.

Physiol. Meas. 40 (2019) 064004 (11pp)
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In this example, video stimuli were used to evoke the emotional states. Among them, the fear-inducing video 
might lead to greater heart rate fluctuations in the subject, especially during the period of heartbeat accelera­
tion and holding of breath that the subject usually experiences during the fear-inducing process. Therefore, the 
SDNN and the other indices that reflect the fluctuations in RR intervals in the fear emotion have larger val­
ues. The sadness-inducing video can trigger complex emotional and cognitive judgments in the subjects. Thus 
SampEn, which reflects the intrinsic complexity of the sequence, is higher, while in fear emotion, it shows the 
lowest value. This might be because some of the intrinsic complexity information is obscured by the fluctuation 
of the sequence. These results suggested that different emotional states can be linked to different HRV indices, 
which is also the physiological basis of multi-feature emotion recognition.

3.  HRV-based emotion study

3.1.  HRV in emotions
Emotions require different patterns of autonomic activity for the purpose of body protection and behavior 
preparation owing to their distinct goals. HRV indices will also show a variety of performances in different 
emotions. Shi et al (2017) investigated the differences in HRV between happiness and sadness in 48 healthy 
volunteers. The results showed that the mean heart rate, SDNN, LFn and LF/HF in happiness were higher 
than those in sadness, while HFn exhibited the opposite result, which suggested greater sympathetic and 
smaller parasympathetic nervous activities in happiness. Valderas et al (2015) reported significant differences 
in HRV indices among relaxed, joy and fear emotional states in 25 subjects recorded during induced emotion 
experiments, even after Bonferroni correction. Compared with the calm-neutral state relaxed, HFn significantly 
decreased and LF/HF increased in the positive elicitation state, joy; the mean heart rate was augmented in the 
negative elicitation state, fear. In addition, LF/HF were higher and HFn was lower in joy than in fear (Valderas 
et al 2015). These results suggested a higher balance in the ANS during joy than during relaxed and fear. In the 
circumplex model of affect, arousal and valence are thought to be adequate parameters to identify specific 
emotions. Gaetano et al (2012) studied the neutral and arousal states in 35 healthy subjects, and the experimental 
results showed that HRV exhibited different behavior during the presentation of neutral images versus high 
arousal images; approximate entropy (ApEn) decreased when switching from the neutral session to the arousal 
session, and the LE was positive during the neutral session and negative during the arousal session, indicating a 
clear switching mechanism between regular and chaotic dynamics from neutral to arousal elicitation.

Table 3.  Definitions of the HRV indices and their possible relationships with emotion.

HRV index Description Relation with emotion

SDNN Standard deviation of RR intervals Correlate with LF (Kleiger et al 2005, Shaffer et al 2014)

RMSSD Square root of the mean squared differences  

of successive RR intervals

Correlate with HF (Kleiger et al 2005)

PNN50 Proportion of differences between successive RR 

intervals longer than 50 ms

Correlate with HF (Kleiger et al 2005)

LF Low frequency power Reflects the activities of sympathetic and vagal nerves, mainly 

sympathetic activity (Taylor et al 1998)

HF High frequency power Reflects the vagal activity (Bloomfield et al 2001)

LFn Normalized low frequency power Similar to LF (Task Force 1996)

HFn Normalized high frequency power Similar to HF (Task Force 1996)

LF/HF Ratio of LF to HF power Reflects the balance between sympathetic and vagal activity; 

there is some debate (Task Force 1996, Billman 2013).

LE Lyapunov exponent, an index to measure the degree 

of convergence and divergence around the phase 

space

Quantifies sensitivity of HRV series to initial conditions and 

characterizes the average divergence rate of adjacent trajecto­

ries in the series (Rajendra Acharya et al 2006)

DFA Detrended fluctuation analysis, a method for deter­

mining the statistical self-affinity of a signal

Quantifies the fractal properties of short-term HRV series 

(Rajendra Acharya et al 2006)

SD1 Standard deviation of the distances of the RR inter­

vals to the lines y   =  −x  +  2RRmean in a Poincaré plot

Quantifies the fast beat-to-beat variability of the HRV series 

(Tulppo et al 1996)

SD2 Standard deviation of the distances of the RR inter­

vals to the lines y   =  x in a Poincaré plot

Quantifies the longer-term variability of the HRV series 

(Tulppo et al 1996)

Entropy A family of statistics that can measure the  

complexity and regularity of RR interval series

Quantifies the complexity and regularity of short-term HRV 

series (Pincus 1991, Rajendra Acharya et al 2006), typically 

as approximate entropy (ApEn), sample entropy (SampEn) 

(Richman et al 2000), fuzzy measure entropy (FuzzyMEn) 

(Liu et al 2013), permutation entropy (PEn) (Xia et al 2018).

Physiol. Meas. 40 (2019) 064004 (11pp)
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3.2.  HRV in emotion recognition
Emotion recognition is valuable in a great number of situations, such as medical applications where there is 
the need to identify the degree of pain while the patient is unconscious or unable to describe the undergoing 
pain, retail applications to determine whether a customer is really interested in buying a certain item, home 
applications by achieving emotional state detection and human-computer interaction to reduce the harm of 
chronic stress to residents, and so on (Alzoubi et al 2012, Mikuckas et al 2014, Jang et al 2015, Rakshit et al 2016). 
There are a variety of methods to carry out emotion recognition by speech (Pervaiz et al 2016), facial expression 
(Yu et al 2009), body movement (Zacharatos et al 2014), discourse (Kao et al 2009), etc. Nevertheless, these studies 
all suffer from the main drawback in that the results can easily be falsified by intentional gestures, actions and/
or expressions of the participants. In recent years, researchers have paid great attention to emotion recognition 
based on physiological signals, among which the ECG signal with HRV is used most extensively (Kim et al 2004, 
Valenza et al 2012, 2014, Jang et al 2015, Yu et al 2015, Guo et al 2016, Rakshit et al 2016, Goshvarpour et al 2017).

A variety of emotion recognition systems based on HRV analysis have been introduced by researchers. 
Time-domain and frequency-domain indices are conventionally used. The accuracy can be improved by using 
non-linear dynamic methods owing to the non-linear characteristics of physiological signals. Guo et al (2016) 
combined time-domain, frequency-domain, a Poincaré plot and a support vector machine (SVM) classifier to 
discriminate two (negative and positive) and five (sadness, anger, fear, happiness and relaxed) emotional states 
in 25 healthy participants without psychiatric history, obtaining accuracies of 71.4% and 56.9%, respectively. 
When only time-domain or frequency-domain indices were used, both accuracies were lower than 55%. Yu et al 
(2015) also developed an emotion recognition system based on time-domain, frequency-domain and a Poincaré 
plot to classify neutral, happiness, stress and sadness emotions by SVM and a genetic algorithm, reporting a high 
classification accuracy of 90%. Valenza et al (2014) extracted the instantaneous spectrum, bispectrum and the 
dominant LE of HRV, then input them to an SVM classifier to recognize four emotional states; they obtained an 
accuracy of 79.29%, with 79.15% on the valence axis and 83.55% on the arousal axis. Goshvarpour et al (2017) 
used a Poincaré plot to distinguish five emotional states and obtained the best classification rate of 97.45%. Since 
photoplethysmography (PPG) signals can easily be detected by wearable devices such as a watch, Rakshit et al 
(2016) studied whether the HRV constructed from PPG could replace that from an ECG, and extracted time-
domain and frequency-domain indices from the PPG signals to identify three emotional states (happiness, sad­
ness and neutral), achieving an accuracy of 83.8% by an SVM classifier. Li et al (2017) also reported marked 
differences in time-domain and frequency-domain indices based on PPG signals between happiness and sadness 
states. Compared with happiness, HFn increased in sadness, while SDNN, LFn and LF/HF decreased. Several 
detectors have also been developed for applications. For example, the MediCore Company has developed a series 
of stress analyzers based on HRV methods and acceleration plethysmograms, which can detect the stress status of 
the participants. MIT has invented an emotion detector named the EQ-Radio and based on HRV and respiratory 
rate analysis, which can accurately detect four emotions: sadness, anger, happiness and joy, with an accuracy rate 
of 87% (Zhao et al 2016).

Many researchers also considered the effects of other physiological signals. Combinations of the conventional 
measures (LF and HF) of HRV and other physiological features from electrodermal activity and skin temperature 
were chosen to classify boredom, pain and surprise, achieving a classification accuracy of 84.7% using DFA (Jang 
et al 2015). Kim et al (2004) achieved accuracies of 78.4% and 61.8% when classifying three (sadness, stress and 
anger) and four (sadness, stress, surprise and anger) emotions, respectively, using an SVM classifier. Valenza et al 
(2012) combined deterministic chaos, recurrence plots and DFA measures in HRV, respiration activity and elec­
trodermal response series analyses, and achieved an accuracy of 90% using the quadratic discriminant classifier.

3.3.  HRV in emotional disorders
HRV analysis can not only distinguish between positive and negative emotions in healthy subjects, but it can 
also distinguish psychiatric emotional disorders. The significance arises from the fact that it can easily detect the 
sympathy-vagal imbalance, if it exists in these disorders.

Table 4.  The results of HRV indices under different emotions from a healthy subject (shown in figure 1).

SDNN RMSSD PNN50 LFn HFn LF/HF SampEn

Calm 64.56 35.43 18.78 0.65 0.35 1.83 1.84

Fear 86.44 60.96 32.45 0.60 0.40 1.47 1.64

Happiness 50.30 37.70 16.06 0.69 0.31 2.20 2.13

Anger 54.14 49.20 30.93 0.50 0.50 1.01 1.77

Sadness 40.04 40.74 23.17 0.45 0.55 0.82 2.48

Physiol. Meas. 40 (2019) 064004 (11pp)
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3.3.1.  Anxiety disorder
Anxiety disorder has become more common, especially among young people (Snyder et al 2009). Psychobiological 
theory suggests that resting vagal tension may be an important physiological indicator of anxiety disorders 
(Porges 2011). Chalmers et al (2014) carried out a meta-analysis based on 36 articles and found that anxiety 
disorders in adults were associated with decreases in time-domain and HF indices of HRV. Another meta-
analysis of 44 studies in children and adolescents showed a similar direction (Graziano et al 2013). Research 
on the relationship between the resting vagal tone and anxiety in young people from samples in a non-clinical 
community obtained a negative relationship (Greaves-Lord et al 2007, 2010, Scott et al 2014) and no relationship 
(Elsheikh et al 2006, Wetter et al 2012), respectively. Time-domain and frequency-domain indices were evaluated 
in 28 women with premenstrual dysphoric disorder and 11 asymptomatic controls. The results showed that the 
SDNN and RMSSD in women with premenstrual dysphoric disorder were lower than those in asymptomatic 
controls, especially in the follicular phase. Supine HF—the most important vagal measure in the frequency-
domain—also declined in the same phase, indicating premenstrual dysphoric disorder might be associated with 
decreased vagal tone (Landen et al 2004).

In another recent study, frequency-domain measures of HRV were chosen to evaluate the effects of thera­
peutic alliance on the anxious client, and the results showed that HRV might be used to measure the relationship 
between client anxiety levels and successful therapy in the future (Stratford et al 2014). Nevertheless, all of these 
studies only use time-domain and/or frequency-domain indices, which are not sufficient to capture the complex 
heartbeat information (Costa et al 2008). Therefore, Bornas et al (2015) explored the differences between adoles­
cents with mild anxiety and severe anxiety by non-linear methods, and found the fractal dimension and SampEn 
in subjects with severe anxiety were significantly lower than those with mild anxiety, indicating the severity of 
anxiety was negatively correlated with HRV.

3.3.2.  Depressive disorder
Clinical evidence has shown that depressive disorder is associated with increased cardiovascular events (e.g. 
cardiovascular morbidity and mortality), indicating that depression should be an independent predictor of 
the severity in patients with cardiovascular disease (Musselman et al 1998). Low HRV is a strong predictor of 
mortality in cardiovascular events. Therefore, studies on HRV have been focused on patients with depression or 
depression superimposed cardiac dysfunction (Carney et al 2001, Agelink et al 2002, Carney et al 2009, Kemp et al 
2010, Borrione et al 2018).

Carney et al (2009) gave an overview of the literature about HRV in patients, with and without depression 
superimposed stable coronary artery disease or a recent acute coronary event (most of them reported declined 
HRV in depressed patients), and concluded that low HRV might play an important role in depression as a 
risk factor for coronary artery disease. They also studied post-myocardial infarction patients, with and with­
out depression disorder, and found that the four frequency-domain indices of HRV significantly decreased in 
patients in the depression group. Further analysis showed no difference in HRV between patients with major 
versus minor depression, despite there being a decreasing trend from minor to major depression (Carney et al 
2001). Another study compared the difference in HRV between patients with major depression and healthy con­
trols, and observed similar results that RMSSD and frequency-domain indices observably decline in patients 
with depression, indicating a significantly lower modulation of cardiac vagal tone in patients (Agelink et al 2002). 
Although most of the HRV indices in patients in the moderate depressive symptoms group did not exhibit a 
significant reduction compared to the controls, they were in the expected direction. A meta-analysis based on 
18 articles, comprising a total of 673 depressed participants and 407 healthy subjects also showed lower HRV 
in patients with depression, and the severity of depression exhibited a negative correlation with HRV, especially 
in the non-linear measures (Kemp et al 2010). These studies suggested that there is a direct negative correlation 
between the degree of depression and modulation of cardiovagal activity. Fraguas et al (2007) studied frequency-
domain indices in eight patients with depression before and after treatment with drugs under four induced  
emotional states of happiness, sadness, anger and neutrality. It was found that the antidepressant reaction was 
positively correlated with the LF of sadness and the LF/HF ratio of happiness, suggesting the possibility of HRV as 
a potential predictor of the antidepressant reaction in induced emotion. In addition, Borrione et al (2018) found 
that melancholic features might be relevant in the association between major depressive disorder and HRV.

A reduction in HRV is also associated with some other negative emotions, such as panic disorder and post-
traumatic stress disorder (PTSD). Prasko et al (2011) assessed the frequency-domain indices in patients with 
panic disorder before and after six-week therapy, as well as healthy controls. Autonomic activity was lower in 
panic disorder patients than in controls, and had a tendency to increase during the treatment. A study from 
Cohen et al (2000) also demonstrated that HRV significantly decreased in patients with panic disorder. Both 
these studies also found that PTSD patients had significantly higher heart rate and lower HRV values than the 
controls (Cohen et al 2000, Prasko et al 2011).

Physiol. Meas. 40 (2019) 064004 (11pp)
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3.4.  HRV biofeedback
HRV biofeedback (HRV-BF) is a relatively new form of psychological and physiological intervention, and is 
applied in training patients to change their heart activity in the variable and dominant rhythms (Wheat et al 
2010). Over the past 20 years, it has gained increasing attention as an affordable and effective way to reduce 
symptoms of hostility, depression and anxiety (Keeney 2008, Jester et al 2019, Yu et al 2018) and to improve 
attention and executive function skills (Sutarto et al 2010). Yu et al (2018) assessed the depression and hostility 
scores in coronary artery disease patients with and without HRV-BF intervention at pre- and post-interventions 
and one-year follow-up. The results showed that compared with the control group, patients with HRV-BF 
intervention exhibited fewer all-cause re-admissions (12.00% versus 25.42% in the control group) and all-
cause emergency visits (13.33% versus 35.59% in the control group). The LF in the HRV-BF group significantly 
increased at both post-intervention and one-year follow-up. Only the patients in the HRV-BF group had 
significantly decreased depression and hostility scores at post-intervention and one-year follow-up. Jester et al 
(2019) carried out HRV-BF intervention among community-dwelling elders (some of them were diagnosed 
with psychiatric disorders), and found that depression and anxiety disorders were significantly improved at the 
end of HRV-BF intervention, especially in the participants with psychiatric disorders, indicating that HRV-BF 
seemed to be effective in reducing these disorders in the elderly.

3.5.  Wearable devices enhance HRV-based emotion analysis and management
With the rapid development of flexible electronics, the internet of things (IoT), machine learning and 
cloud computing, wearable devices have become powerful tools for people’s daily health monitoring due to 
convenience and unobtrusive daily use (Malinin et al 2012, Matic et al 2012). Thus, they provide a potential 
improvement for emotion monitoring and regulation. Special sensor (Surrel et al 2015) and detection methods 
(Cheng et al 2017) have been developed to enhance the re-equipping of real-time and comfortable HRV-based 
emotion monitoring by wearable devices. Matic et al (2012) explored the emotional and other psychological 
responses of sedentary subjects using a Shimmer Wireless ECG sensor, and showed that subjects with sedentary 
working styles were more likely to have negative emotions. Music is recognized as playing a role in inducing 
strong emotional experiences, including positive and negative emotions (Hegde et al 2012, Ramasamy et al 2016). 
Hegde et al (2012) reported that HRV indices collected by e-bra showed marked differences from baseline to 
three different types of music conditions (happiness, sadness and peppy upbeat Hindi film song). In particular, 
the LF/HF under the sadness music condition decreased significantly, suggesting that the e-bra can be used to 
monitor cardiac physiology during music therapy. Ramasamy et al (2016) also described a preliminary study of 
emotion-based neuro-cardiology under music therapy.

Moreover, wearable devices have also been applied to HRV biofeedback systems that have emerged over the 
last few years (Gerasimov et al 2002, Zhang et al 2009, Wu et al 2012, Abtahi et al 2015). Zhang et al (2009) 
described a wearable respiration biofeedback platform for respiration guidance. Gerasimov et al (2002) intro­
duced a type of wearable data acquisition system for stress monitoring and biofeedback training. Abtahi et al 
(2015) developed a wearable knitted garment with an HRV biofeedback system, which can help to improve the 
HRV and autonomic balance. Wu et al (2012) designed a wearable biofeedback system based on a multi-biosen­
sor platform combined with a resonance frequency training biofeedback strategy for stress management and 
emotional control of unemployed people in daily life.

4.  Outlook

HRV has been taken into consideration as an objective measure of emotional response, among which the 
polyvagal theory and the model of neurovisceral integration are the main supporting theories (Appelhans et al 
2006). The reliability of wearable devices for HRV measurement in static posture has also been confirmed (Tsoi 
et al 2017). Therefore, a combination of wearable device and HRV-based emotion analysis can realize convenient 
emotion monitoring, and even promote the realization of real-time feedback regulation that will be of great 
significance; for example, an intelligent wearable system that can determine the emotional arousal and attention 
process of students during e-learning and further provide appropriate background music advice, which plays 
an important role in promoting innovative teaching methods based on network learning (Artífice et al 2017). 
Personalized wearable systems can detect the users’ emotions and then select the appropriate emotion-regulating 
music (Chiu et al 2017) or HRV biofeedback (Mukhopadhyay et al 2015). The realization of real-time feedback 
regulation for relevant high-risk groups (such as the unemployed population, pregnant women, empty nest 
elderly, people with mental disorders, etc), or even ordinary individuals, is also valuable for avoiding the effects of 
negative emotion on physical and mental health.

An HRV-based emotion study is usually carried out when the participant is in the resting state. Mikuckas et al 
(2014) examined the impact of emotion and posture on HRV and found posture had a great impact on the HRV 
indices. The SDNN, RMSSD and PNN50 increased, while mean heart rate decreased during the resting state 
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with stressful emotion. The RMSSD marginally changed. Mean heart rate increased while the other two indices 
declined during the walking state, indicating that the change in posture should be carefully considered during 
HRV-based emotion studies. In addition, aging, smoking and alcohol can also influence HRV (Melo et al 2005, 
Rajendra Acharya et al 2006). Gender, cardiovascular disease, diabetes mellitus and some other diseases can lead 
to variations in HRV (Rajendra Acharya et al 2006). Consequently, these factors, as well as the circadian rhyth­
micity (Kim et al 2014), should be taken into account in practical applications of HRV to ensure the accuracy of 
real-time emotion monitoring.

5.  Conclusion

HRV reflects the activities of sympathetic and parasympathetic nerves participating in heart regulation, which 
is further regulated by the central autonomic network that adjusts the emotional response and physiological 
arousal. The physiological foundations of HRV, as well as its advantages of convenience and non-invasiveness, 
support it as an important tool for emotion study. A variety of studies have shown that the traditional time-
domain and frequency-domain indices of HRV are able to characterize the autonomic activity among emotions, 
and the non-linear measures can help to improve the effectiveness. Recently developed wearable techniques 
enhance the practical requirement and implementability of HRV-based emotion monitoring. Therefore, HRV 
analysis has attracted wide attention with its broad application prospects in emotion recognition, emotion 
monitoring, mental disorder intervention and prognosis detection.
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