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Abstract 
Progress in wearable techniques makes the long-term 

daily electrocardiogram (ECG) monitoring possible. 

Premature ventricular contraction (PVC) is one of the 

most common cardiac arrhythmias. This study proposed 

a method by combining the modified frequency slice 

wavelet transform (MFSWT) and convolutional neural 

network (CNN). Training data are from the 2018 China 

physiological signal challenge (934 PVC and 906 

non-PVC recordings). The first 10-s ECG waveforms in 

each recording were transformed into 2-D 

time-frequency images (frequency range of 0-50 Hz and 

size of 300 × 100) using MFSWT. A 25-layer CNN 

structure was constructed, which includes five 

convolution layers with kernel size of 3×3, five dropout 

layers, five ReLU layers, five maximum pooling layers 

with kernel size of 2 × 2, a flatten layer, two fully 

connected layers, as well as the input and output layers. 

Test data were recorded from 12-lead Smart ECG vests, 

including 775 PVC and 742 non-PVC recordings. 

Results showed that, the proposed method achieved a 

high accuracy of 97.89% for PVC/non-PVC episodes 

classification, indicating that the combination of MFSWT 

and CNN provides new insight to accurately identify 

PVC from the wearable ECG recordings. 

 

1.   Introduction 

As a comprehensive reflection of cardiac activity, 

electrocardiogram (ECG) analysis has proven to be the 

archetypal method for detection of dangerous cardiac 

conditions. ECG effectively presents valuable clinical 

information regarding the rate, morphology, and 

regularity of the heart while being a low-cost and 

non-invasive test [1,2]. Advancement of wearable 

technology has enabled the recording of long-term 

dynamic ECGs. Specifically, wearable ECG analysis can 

be used for real-time detection of cardiac arrhythmias, 

such as premature ventricular contractions (PVCs). 

PVCs result from irritated ectopic foci in the heart’s 

ventricles, and are independent of the pace set by the 

sinoatrial node. Recent studies have shown that the 

occurrence of PVCs is indicative of increased risk of 

sudden cardiac death, and is linked to mortality when 

associated with myocardial infarction [3]. Consequently, 

their immediate detection and treatment is essential for 

patients with heart disease. 

Different methods have been proposed for heart beat 

classification, such as support vector machine (SVM) 

[4,5], neural network [6,7], fuzzy mathematics [8], 

disease rule [9] and so on. Most PVC detection 

algorithms can obtain good classification performance on 

the standard ECG database [10]. However, the traditional 

neural network algorithm has a large amount of 

computation and a long training time, and it is hard to 

realize real-time detection. Fuzzy mathematics methods 

need to simplify many clinical discriminating rules and it 

is difficult to adapt to complex ECG records.  

This study aims to explore the possibility of PVC 

identification method based on the combination of 

modified frequency slice wavelet transform (MFSWT) 

and convolutional neural network (CNN). The idea is 

that with the highlight of PVC characteristic in 2-D 

MFSWT images, the employed CNN model can 

accurately identify the PVC incidents in ECGs. 

 

2.  Methods 

2.1  Data 

Training data were from the 2018 China physiological 

signal challenge (CSPC-2018) [11] and test data were 

recorded from a newly developed 12-lead Lenovo Smart 

ECG vest [12]. All recordings were intercepted the only 

first 10-s segments. The database consists of 1,840 

training 10-s segments and 1,517 test segments. ECGs 

have a sampling rate of 400 Hz and a resolution of 16 bits. 

A large part of PVC signals only has a heart beat’s 

abnormality, often lasting only about 1 second. Thus the 

10-s ECG segments have been manually labeled by 

clinical experts and technicians as two types: PVC and 

non-PVC. The data profile was given in Table 1. 

Table 1. Data profile in the training and test sets. 

Database Type Number 

Training 
PVC 934 

non-PVC 906    

Test 
PVC 775 

non-PVC 742 
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2.2  Signal preprocessing 

Smooth denoising and normalization were used as 

signal preprocessing. Smooth denoising removes high 

frequency components from the signal and normalization 

can eliminate the dimensions of the sample and 

summarize the statistical distribution of the sample. This 

operation can improve the performance of learning speed 

rate of the neural network since the singular sample can 

not only increase the network training time, but also may 

cause the model fail to converge. 

 

2.3 Modified frequency slice wavelet 

transform (MFSWT) 

MFSWT can efficiently contain the time-frequency 

information of ECG in the transformed 2-D images, such 

as P-wave, QRS complex and T-wave, and were 

successfully applied in the previous studies [13,14]. A 

bound signal-adaptive frequency slice function (FSF) was 

introduced in MFSWT, which can realize the adaptive 

measurement of signal energy distribution at different 

observation frequencies. The reconstruction is readily 

accepted by clinicians. The model of MFSWT was 

expressed as follows: 

𝑊𝑓(𝑡, 𝜔) =
1

2𝜋
∫ 𝑓

+∞

−∞
(𝑘)𝑝̂∗(

𝜇−𝜔

𝑞(𝑓(𝑘))
)𝑒−𝑖𝑘𝑡𝑑𝑘     (1) 

where 𝑓(𝑘) is the Fourier transform of 𝑓(𝑡), t and 𝜔 
are observed time and frequency, respectively, * represents 

conjugation operator, 𝑝̂ is the FSF defined as 𝑝̂(𝑥) =

𝑒−𝑥2 2⁄ , q is a scale function of 𝑓(𝑘). it uses the function 

form of Eq. (2): 

𝑞 = 𝛿 + 𝑠𝑖𝑔𝑛(∇|𝑓(𝜇))            (2) 

where 𝛿  is the frequency position of the signal main 

component. It can be estimated from the frequency 

position corresponding to maximum |𝑓(𝜇)|. ∇(∙) is a 

differential operator, and 𝑠𝑖𝑔𝑛(∙) means signum function. 

FSF here adopts a Gaussian function form and 𝑝̂(0) =
1 is always true. Then the original signal can be 

reconstructed as follows: 

 𝑓(𝑡) =
1

2𝜋
∫ ∫ 𝑊𝑓(𝑡, 𝜔)𝑒𝑖𝜔(𝑡−𝜏)𝑑𝜏𝑑𝜔

+∞

−∞

+∞

−∞
     (3) 

Figure 1 shows the examples of preprocessed 10-s 

normal and PVC segments and their corresponding 

MFSWT images with different frequency ranges: 0-90 Hz 

and 0-50 Hz with a fixed pixel size of 300×100. 

 

2.4  Convolutional neural network (CNN) 

CNNs are now commonly used for deep learning tasks, 

voiding the need for any manual feature extraction and 

postprocessing. In the current study, a 25-layer CNN 

structure was constructed. Except the input and output 

layer, it includes five convolution layers, five dropout 

layers, five ReLU layers, five maximum pooling layers, a 

flatten layer and two fully connected layers. Figure 2 

illustrates the architecture of the implemented network. 

Table 2 gives the specific parameter settings (after 

optimization) for the CNN architecture used in this study. 

 

 

 
Figure 1. Examples from a 10-s normal ECG segment (a) 

and a 10-s PVC ECG segment (b), with their 

corresponding MFSWT spectra. 

2.5  Model evaluation 
Six widely used metrics, i.e., sensitivity (Se), 

specificity (Sp), accuracy (Acc), F-measure, area under 

the receiver operating characteristic curve (ROC), i.e., 

AUC, and Kappa coefficient, were used for evaluation. 

According to the labelled references, the result can 

generate four basic parameters: true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN). 

In this case, 𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄ . 

Se is the true positive rate, is probability of incorrectly 
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Figure 2.  The architecture of the network. 

diagnosing into positive among all positive patients, so 

𝑆𝑒 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ . Sp is proportion of incorrectly 

diagnosing into negative among all negative patients, so 

𝑆𝑝 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ .        

F-measure is defined as:  

𝐹𝛽 =
(𝛽2+1)𝑃𝑅

𝛽2𝑃+𝑅
                                (4) 

where β is a parameter, P is precision rate and it is 

defined as 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
 , R is recall rate, and its value 

equals to Se. Take 𝛽 = 1, and we get 𝐹1 =
2𝑃𝑅

𝑃+𝑅
.  

Kappa coefficient can verify consistency and can be used 

to measure classification accuracy. It is defined as: 

𝐾 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                (5) 

Table 2. CNN specifications designed for the ECG 

classification problem. 

Parameters Values 

Learning rate  0.005 

Convolutional layer kernel size 3×3 

No. of feature maps in the first convolutional 16 

No. of feature maps in the second convolutional 32 

No. of feature maps in the third convolutional 64 

No. of feature maps in the fourth convolutional 128 

No. of feature maps in the fifth convolutional 256 

Leave probability of dropout layer 0.5 

Max pooling layer kernel size  2×2 

No. of neurons in the first fully connected layer  256 

No. of neurons in the second fully connected layer  2 

No. of epoch 50 

Size of mini-batch 10 

    

where 𝑝0 is Acc. Suppose that the number of real 

samples in each class is 𝑎1, 𝑎2  respectively, and the 

number of samples predicted in each class is 𝑏1, 𝑏2. The 

total number of samples is n, and 𝑝𝑒 =
𝑎1×𝑏1+𝑎2×𝑏2

𝑛×𝑛
. 

ROC curve has the true positive rate (Se) as the 

ordinate and the false positive rate (1-Sp) as the abscissa. 

AUC is defined as the area under the ROC curve. 

 

3.  Results 
 We equally split the 1,517 test ECG episodes into  

ten groups. The recording numbers for the ten groups are 

151, 151, 151, 152, 152, 152, 152, 152, 152, 152 

subsequently. Classification results from the evaluation 

metrics are summarized in Table 3. We can see that all 

metrics reported relatively high scores, indicating that 

the developed model can efficiently identify the PVC 

rhythm from the non-PVC signals. An overall accuracy 

of 97.89% and an overall AUC of 97.88% were achieved, 

with less than 1% inter-group variability. 

Table 3. Results from the evaluation metrics

Fold 
Test data 

TP TN FP FN Se (%) Sp (%) K (%) 𝐹1 (%) Acc (%) AUC (%) 

1 72 76 2 1 98.63 97.44 96.02 97.96 98.01 98.03 

2 77 72 1 1 98.72 98.63 97.36 98.72 98.68 98.67 

3 73 73 2 3 96.05 97.33 93.38 96.69 96.69 96.69 

4 81 67 3 1 98.78 95.71 94.70 97.59 97.37 97.25 

5 85 66 1 0 100.0 98.51 98.66 99.42 99.34 99.25 

6 74 73 3 2 97.37 96.05 93.42 96.73 96.71 96.71 

7 81 68 3 0 100.0 95.77 96.03 98.18 98.03 97.89 

8 72 77 3 0 100.0 96.25 96.06 97.96 98.03 98.13 

9 73 76 3 0 100.0 96.20 96.06 97.99 98.03 98.10 

10 76 73 0 3 96.20 100 96.06 98.06 98.03 98.10 

Total 764 721 21 11 
98.58±

1.47 

97.17±
1.38 

95.78±
1.54 

97.95±
0.78 

97.89±
0.77 

97.88±
0.76 
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4.  Discussion 
 This study proposes an innovative framework for 

PVC detection based on MFSWT time-frequency 

representation and CNN classifier, which can accurately 

identify PVC ECG segments from the wearable big data 

ECGs. We build a unique CNN architecture to train the 

classification model that uses the time-frequency image 

generated by MFSWT method as input. The test data 

recorded from 12-lead Lenovo Smart ECG vest is 

evaluated by the trained model and obtain an accuracy of 

97.89%, indicating that the method has clinical 

significance. Xu et al. [15] applied this MFSWT method 

in the detection of atrial fibrillation, and enhanced the AF 

detection accuracy up to 84.85%.  

Yang et al. combined clinical diagnostic criteria with 

image processing methods, extracted heart rhythm 

parameters and QRS complex morphological features, 

and then used SVM to perform heart beat classification. 

The MIT-BIH database was used for training and 

verification and the PVC recognition rate was 95.31% 

[16]. It is noted that performance of the classifier relied 

too much on the quality of feature extraction. Since the 

morphologies of PVC beats can vary enormously from 

person to person, the model may suffer from overfitting 

and non-universality. A CNN method can eliminate the 

feature design and extraction process required in this 

kind of approaches.  

In addition, considering that PVC is a dynamic process, 

real-time monitoring is important. Our work also has 

obvious advantage in the running time of the algorithm. 

Li et al. proposed a method to automatically discriminate 

PVC beats from other beats and artifacts with the use of 

wavelet transform and CNN. Ten-fold cross validation 

results on MIT-BIH showed that this algorithm achieved 

a highest overall accuracy of 97.96% using Paul wavelet 

[17]. However, it has been confirmed that MFSWT can 

better capture the tiny changes in the frequency domain 

than CWT [13]. Moreover, the ECG signal data used in 

our study were all from wearable ECG monitoring 

equipment so as to ensure clinical applicability. The next 

step of research should focus on expanding the types of 

diseases detected based on ensuring accuracy. 
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