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Temporal-Framing Adaptive Network for Heart
Sound Segmentation Without Prior

Knowledge of State Duration
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Xianghong Cheng, Jianqing Li, and Gari D. Clifford , Senior Member, IEEE

Abstract—Objective: This paper presents a novel heart
sound segmentation algorithm based on Temporal-Framing
Adaptive Network (TFAN), including state transition loss
and dynamic inference. Methods: In contrast to previous
state-of-the-art approaches, TFAN does not require any
prior knowledge of the state duration of heart sounds
and is therefore likely to generalize to non sinus rhythm.
TFAN was trained on 50 recordings randomly chosen from
Training set A of the 2016 PhysioNet/Computer in Cardi-
ology Challenge and tested on the other 12 independent
databases (2,099 recordings and 52,180 beats). And fur-
ther testing of performance was conducted on databases
with three levels of increasing difficulty (LEVEL-I, -II and
-III). Results: TFAN achieved a superior F1 score for all 12
databases except for ‘Test-B,’ with an average of 96.72%,
compared to 94.56% for logistic regression hidden semi-
Markov model (LR-HSMM) and 94.18% for bidirectional
gated recurrent neural network (BiGRNN). Moreover, TFAN
achieved an overall F1 score of 99.21%, 94.17%, 91.31%
on LEVEL-I, -II and -III databases respectively, compared to
98.37%, 87.56%, 78.46% for LR-HSMM and 99.01%, 92.63%,
88.45% for BiGRNN. Conclusion: TFAN therefore provides
a substantial improvement on heart sound segmentation
while using less parameters compared to BiGRNN. Signif-
icance: The proposed method is highly flexible and likely
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to apply to other non-stationary time series. Further work
is required to understand to what extent this approach will
provide improved diagnostic performance, although it is
logical to assume superior segmentation will lead to im-
proved diagnostics.

Index Terms—Heart sound segmentation, phonocardio-
gram, deep neural networks, hidden semi-Markov models.

I. INTRODUCTION

CARDIAC auscultation, for identifying heart sounds, is
commonly the first step and the most cost-effective mea-

sure for screening the various heart dysfunction, even though
the final diagnosis is based on the combined analysis from
a series of electrophysiologic study or ultrasound recordings.
Heart sounds can reflect the hemodynamic processes of the heart
and identify some representative symptoms of different diseases,
including arrhythmia, valve disease, pulmonary hypertension,
heart failure, among other issues [1]. However, only about
20% of medical interns can effectively detect heart conditions
using auscultation [2], and extensive training is necessary for
human expert evaluation. Automatic and accurate analysis of
the recording of heart sounds (the phonocardiogram, or PCG)
can be useful for auxiliary diagnosis in clinical applications, and
it can potentially assist interns with less developed skills.

The segmentation of heart sounds is a critical step in the au-
tomatic analysis of PCG. Accurate localization of fundamental
components in PCG is a pre-condition of mining more specific
pathological information, including the preliminary diagnosis
of specific pathogenic sites and severity levels of these heart
diseases [3]. Although unsupervised approaches can facilitate
classification or prediction, the lack of interpretability is likely
to be a significant barrier to clinical adoption.

Each heart cycle usually consists of a sequence of temporally-
constrained states; the first heart sound (S1), the systolic period,
the second heart sound (S2) and then the diastolic period (Fig. 1).
Segmentation of the PCG into these states facilitates further
(pathological) feature extraction within different periods of each
heart cycle, e.g., the audible third and fourth heart sound (S3
and S4), murmurs, ejection clicks, pericardial “knock,” etc. In
addition, segmentation into these states allows for the detection
of abnormalities in the timing of different sounds. For example,
a mid or late systolic click is most likely a diagnostic indicator
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Fig. 1. Example of a recorded PCG signal and four states of the heart
cycle (S1, systole, S2, diastole).

of mitral (or tricuspid) valve prolapse, even though echocardio-
grams may fail to confirm this finding [1].

In earlier works, segmentation of heart sounds have leveraged
features from both the time and frequency domain [4]–[8],
including: Shannon energy [9], wavelet envelope [10], Hilbert
transform [11], time-frequency transform [12]–[14], and cep-
stral coefficients [15]–[17], etc. These features have been used
both directly (on a sliding window) or to generate observable
sequences from heart sounds for probabilistic sequence models,
like hidden Markov models (HMMs) and their variations [18]–
[20]. Although HMM-based methods have the advantage of
modeling the sequential and periodic nature of heart sounds, this
can result in false positives when noise or artifacts occur with
similar features to the heart sounds. To mitigate this problem,
Gill et al. [21] proposed the incorporation of timing durations
within HMM for heart sound segmentation. Schmidt et al. [22]
were the first to explicitly model the expected duration of
heart sounds within the HMM framework using a hidden semi-
Markov model (HSMM). Springer et al. [18] extended this work
by modifying the Viterbi algorithm to include the duration densi-
ties and adding a logistic regression emission layer. This logistic
regression-HSMM-based (LR-HSMM) method was evaluated
on 10,172 seconds of heart sounds collected from 112 (healthy
and pathological) subjects (with simultaneous electrocardio-
gram (ECG) as a gold standard) and demonstrated an average
F1 score of 98.5% for segmenting S1 and 97.2% for segmenting
S2 [23]. This method was adopted as the reference segmentation
method in the 2016 PhysioNet/Computet in Cardiology (CinC)
Challenge for the classification of normal and abnormal heart
sounds [24].

Nevertheless, the dependence of prior knowledge of state du-
ration makes the method prone to false negatives during arrhyth-
mia, particularly for tachycardia and bradycardia. As reported by
the authors in the assessment of the 2016 PhysioNet/CinC Chal-
lenge [24], Not all researchers adopted Springer’s segmentation
method as the first step in the required classification task [25]–
[28]. Whereas, the accuracy of anomaly recognition was not
distinguished by this. It is indicated that segmentation does not
necessarily result in an obvious improvement in classification.
And further development of the segmentation algorithm may
result in superior performance.

Recently, various approaches for reducing the explicit re-
strictions on state duration in heart sound segmentation have
been proposed. Messner et al. [29] suggested an event detection
approach using bidirectional gated recurrent neural network

TABLE I
STATISTICS OF RE-ANNOTATED DATABASES AFTER EXCLUDING

UNSURE RECORDINGS

*in Training-E∗ and Test-E∗ indicates that part of original Training-E and Test-E were
utilized in this work.

(BiGRNN) and achieved a similar performance compared to
Springer’s method. Renna et al. [30] utilized 1D U-Net [31]
as transformation for HMMs and HSMMs. Meanwhile, with
the progress in convolution neural network (CNN) for temporal
data [32], [33], it seems obvious to apply these techniques in
this context. However, such deep-learning-based (DL-based)
approaches are known to overfit on the differences in noise
levels between databases, due to recording conditions and device
heterogeneity.

In this work, we propose an algorithm that combines both
automated feature learning and sequential modeling. In order
to eliminate the instability of the segmentation on pathological
and noisy PCG signals, the proposed method disuses prior
knowledge of heart sound state duration. The main contributions
of this paper are:

1) Designing an adaptive Wiener filter to reduce the vari-
abilities of the characteristics from different stethoscopes
on heart sounds.

2) Developing an adaptive learning method to detect the four
states of heart sounds, including building a temporal-
framing adaptive network (TFAN) for the frame-level
recognition, and designing state transition loss and dy-
namic inference.

3) Testing and comparing the proposed method with two
state-of-the-art methods, the LR-HSMM method [18] and
the BiGRNN-based method [29], over the whole database
from PhysioNet/CinC Challenge 2016 and data sets with
different segmentation difficulties.

II. DATABASE

A. General Introduction

The 2016 PhysioNet/CinC Challenge [34] contains 12 inde-
pendent data sets collected by different research teams. These
were used to develop and test the proposed method (see Table I).
Among them, Training-A is the only database which contains
simultaneously recorded PCGs and ECGs. The other 11 sub
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data sets only contains PCGs, namely Training-B˜E* and F, and
Test-B˜E*, G and I.

The state labels of data sets were assigned as onsets of S1,
systole, S2 and diastole. S1 occurs immediately after R-peaks
(ventricular depolarization) of the ECG, while S2 occurs at
approximately at the end-T-waves of the ECG (the end of
ventricular depolarization) [18], [35]. Therefore, for PCGs with
synchronous ECGs, the automated-detected R peaks and end-T-
waves were the basis of annotations of S1 and S2 onsets. The seg-
mented results solved by LR-HSMM were utilized as automatic
marks for annotation reference in recordings containing only
PCGs. The incorrect annotations happen in Training-A when
R peaks and end-T-wave positions of an abnormal ECG period
were misdetected. For data sets besides Training-A, although the
annotations provided for the challenge were manually corrected
by the organizers, some of them were still questionable and
required re-annotations. These annotations were hand-corrected
by visual and audible inspection of PCG waveforms. The re-
annotation instances in Training-A are illustrated with reference
ECG in Fig. 2.

Since the majority of heart sounds in Training-E (N = 4,074)
and Test-E (N = 901) are normal, a total of 500 and 200
recordings were randomly extracted from Training-E and Test-E
respectively to alleviate the re-annotation work while ensuring
the accuracy of the evaluation.

B. Derivative Date Set

In order to further excavate characteristics of each data set,
several indicators were designed as follows:

W =
1

N

N∑
n=1

y2[n], (1)

FS2 =
WS2

Wdiastole
, (2)

Dnoise&murmur =
Wsystole +Wdiastole

WS1 +WS2
, (3)

Drhythm =

√√√√ 1

M − 1

M−1∑
i=1

(ss[i]− E {ss})2, (4)

Drate=

∥∥∥∥max(1.2, E {ss}) + min(0.6, E {ss})−1.8

∥∥∥∥,
(5)

where W is the average power of the heart sound y[n] with N
points and M heart beats. FS2 defines S2 sound articulation as
the ratio of S2 sound’s energy to diastolic energy. Dnoise&murmur

is the ratio of power between systole/diastole and S1/S2, which
represents the index of murmur severity and signal quality.
Drhythm is estimated by the summation of the standard deviation
of S1 onset intervals (ss) to measure the severity of arrhythmia.
Drate is relative difference of E{ss} from normal range, which
reflects the degree of abnormality in heart rate (bradycardia and
tachycardia). In Equation (5), 1.2 s and 0.6 s are average S1 onset
intervals of 50 and 100 heart beats per minute, respectively.

According to the statistical results of the indicators, for normal
heart sounds, Dnoise&murmur is below 0.3 and FS2 is larger than
2.0. And for the cases contaminated by sever murmurs or noise,
Dnoise&murmur is always over 0.8. Therefore, the noise&murmur
level can be divided into low (Dnoise&murmur ≤ 0.8) and high
(Dnoise&murmur > 0.8). During arrhythmia, Drhythm is over 0.12,
which is also the indicated value for PP interval deviation of
arrhythmic ECG. Drate would be greater than 0 when the heart
rate is abnormal.

Three derivative data sets were constructed according to the
designed indicators. They were named LEVEL-I, LEVEL-II and
LEVEL-III, corresponding to easy, medium and difficult in terms
of both automatic and manual heart sound segmentation. The
threshold ofDnoise&murmur is set to 0.8 to distinguish heart sounds
with complicated severe noise and murmur. Drhythm +Drate is
an indicator of abnormal heart rhythm and heart rate. Thus, the
threshold of Drhythm +Drate is assigned a value of 0.2 s. Fig. 3
provides a graphical illustration of the above partition rules.

All of the heart sound recordings chosen for different levels
were segmented into multiple 10 second files. The resultant
numbers of recordings and beats are summarized in Table II.
The specific instances in the three difficulty levels are displayed
in Fig. 4.

We counted the proportion of various anomalies in each data
set based on the indicators, including heart sounds with high-
level noise&murmur, arrhythmic heart sounds, heart sounds with
abnormal heart rate and heart sounds with vague S2. It was found
that Training-B and Test-B have the lowest signal quality among
the data sets and all of the data sets contain a certain amount of
heart sounds with arrhythmia and abnormal heart rate expect for
Training-A. The specific data is shown in Table III.

III. METHODS

The proposed method involves two main parts: a signal
pre-processing routine, and the TFAN segmentation. The sig-
nal pre-processing employed three filters: an adaptive Wiener
filter, a bandpass filter and a wavelet filter. The TFAN is an
original network designed for heart sound segmentation with
an encoder-decoder architecture. In order to learn the state
transition information in PCG, the loss function of the TFAN
was carefully designed.

A. Signal Pre-Processing

The segmentation algorithm used a combination of three
filtered PCG signals as inputs. The three filters included an
adaptive Wiener filter, a bandpass filter and a wavelet filter. As
shown by the instances reported in Fig. 5, the adaptive Wiener
filter was designed to suppress the in-band noise, especially
reduce the impact of tail sounds in systole and diastole. This ap-
proach increased the amplitude resolution of alternate segments
between heart sound states. The bandpass filter and the wavelet
filter were applied to enhance S1 and S2 sounds and provided
complementary information of their waveform features.

1) Adaptive Wiener Filter: Consider a zero-mean clean
heart sound signal x(n) contaminated by noise v(n) (uncor-
related with x(n)), so that the noisy heart sound y(n) at the
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Fig. 2. Illustrations of the ECG and simultaneous PCG with automatically derived states in Training-A. Sub-figures (a) and (b) are from patients
with premature ventricular contractions (PVCs), and sub-figure (c) is from a patient with premature atrial contractions (PACs). Arrhythmia-like PACs
or PVCs always induce the false annotations in PCG signals (middle waveform in yellow) and the arrows point out the mistakes in the original
annotation. The corrected annotations are shown in each sub-figure as a repeated waveform and a red staircase plot overlaid. Each level in the
staircase plot represents S1, systole, S2 and diastole (in ascending value).

discrete time n is

y(n) = x(n) + v(n), n = 0, . . ., N − 1, (6)

The estimation of the error signal ex(n) between the clean
heart sound at the discrete time n is given by

ex(n) = x(n)− x̂(n) = x(n)− hTy(n), (7)

where superscript T denotes transpose of a vector or a matrix,

h = [h0, h1, . . ., h(L− 1)]T

is an finite impulse response (FIR) filter of length L, and

y(n) = [y(L− 1), y(L− 2), . . ., y(0)]T
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Fig. 3. The partition rules of the three difficulty levels (LEVEL-I,
LEVEL-II and LEVEL-III) based on the extent of noise/murmur and
evaluation of heart rhythm/rate in heart sounds.

TABLE II
SUMMARY OF DATABASES CORRESPONDING TO THREE DIFFICULTY LEVELS

is a vector of window from observation signal y(n) containing
L samples.

Assuming the optimal estimate of the clean heart sound x(n)
is x̂o(n), the optimal filterho for x̂o(n) is the Wiener filter which
is obtained by

ho = argmin
h

E{e2x(n)}. (8)

According to Wiener-Hopf equation, we have

Ryho = E {y(n)x(n)} = ry − rv, (9)

where Ry is the correlation matrix of the observed signal y(n).
ry and rv are the correlation vectors, which are also the first
columns of Ry and the correlation matrix of the noise Rv

respectively.
Now ho can be inferred as

ho = u1 −R−1
y rv, (10)

where u1 = [1, 0, . . ., 0]T .
Assuming that the additive noise is white over a very short

time duration in comparison to the heart sounds, we have

rv = σ2
vu1, (11)

and

ho = u1 − σ2
vR

−1
y u1

=

[
1− σ2

v

Ry[0]
, 1− σ2

v

Ry[1]
, . . ., 1− σ2

v

Ry[L− 1]

]
, (12)

where σ2
v = E{v2(n)}.

Because the noise v(n) is not directly observable,σ2
v is ideally

calculated while there is no heart sound signal. In order to avoid
being disturbed by sudden changes in the recording, the local
window is segmented in fixed length and σ2

v is estimated as the
lower quartile of the local variances Q1(lvar) for all segments.
Finally the estimated heart sound of the local window x̂(n) is
given by

x̂(n) = ho(n)
Ty(n)

=

(
1− Q1(lvar)

Ry[n]

)
y(n), n = 0, 1, . . ., L. (13)

2) Bandpass Filter: The majority of the frequency content
in S1 and S2 sounds is below 150 Hz, usually with a peak around
50 Hz [36]. Thus, a Bandpass filter was applied to create a signal
with 30–60 Hz pass-band, to be used as one input channel to
provide the potential optimal positions of S1 and S2.

3) Wavelet Filter: The first step in the wavelet filter for heart
sounds is a discrete time wavelet transform (DWT). Following
Springer et al. [18], the reverse biorthogonal wavelet with three
vanishing moments for the decomposition (analysis) wavelet
and nine vanishing moments for the reconstruction (synthesis)
wavelet (′rbio3.9′) was used. In order to remove the insignificant
noise, the detail coefficients below an adaptive threshold at
some scales were set to zero. The threshold was set to be the
median energy, which was estimated by averaging the absolute
coefficients at different scales. The final filtered heart sounds
were reconstructed by the inverse DWT.

B. Temporal-Framing Adaptive Network

1) Model Architecture: The TFAN was designed with an
encoder-decoder architecture. The encoder (Fig. 6) is a trans-
former module for the purpose of mapping the original signals
into a feature space. The decoder (Fig. 6) is designed to segment
the output feature mapped by the encoder into four states (S1,
systole, S2, diastole). Within the network, a framing module is
deployed between the encoder and the decoder.

Before loaded to the TFAN model, each processed heart
sound recording was sliced into segments of two seconds and
resampled to 1,000 Hz. The input data is denoted as x(n) for
n = 0, . . ., 1, 999 and x(n) ∈ R3.

2) Encoder: A residual convolution block is used as a ba-
sic unit for feature mapping (Fig. 6). The residual block [37]
contains a branch leading out to a series of transformations F ,
whose outputs are added to the input x of the block, so the
original mapping is recast intox+ F (x). This effectively allows
layers to learn modifications to the identity mapping, rather
than the entire transformation, which is more advantageous for
identifying similar states in the heart sound (e.g., S1 and S2).

In the TFAN, instance normalization (IN) and dilated convo-
lution were utilized in each residual block. The reasons for using
IN are: 1) The segmentation model is trained with limited batch
size and IN normalizes across each training sample instead of the
mini-batch, therefore biased estimations of mean and variance
of mapped features are avoided; 2) IN normalizes across each
channel, so the independence of each channel is maintained.
For the input data x ∈ RN×T×C , IN calculates the mean and
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Fig. 4. Sub-figures (a), (b) and (c) correspond to three instances from LEVEL-I, LEVEL-II and LEVEL-III respectively. The blue dashed line
indicates the states assigned by the LR-HSMM method and the arrows identify the unsuccessful segmentation. Note that the increased difficulty
significantly impacts the performance of the LR-HSMM method.

variance across the time dimension of each sample and retains
the dimensions of the batch N and channel C as

μnc(x) =
1

T

T∑
t=1

xnct, (14)

σnc(s) =

√
1

T

∑T

t=1
(xnct − μnc(x))2 + ε, (15)

where ε is the biased value to avoid division by 0 when normal-
izing the weights.

Dilated convolution can enlarge the receptive field of convo-
lution layers and preserve the size of feature maps without loss
of resolution. This is critical for the subsequent framing module
and decoder. Meanwhile, bidirectional padding is chosen as the
padding strategy in dilated convolution. The padding length is
decided by the convolutional kernel size and dilation rate. Fig. 7
illustrates the padding method for different dilation rates (d) in
the case of a convolution kernel size (ks) of 3.

3) Decoder: Before passed through the Decoder, the feature
map of the heart sound produced by Encoder is framed by a fixed
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TABLE III
SUMMARY OF THE CHARACTERISTICS IN EACH DATA SET. THE NUMBER OF RECORDINGS AND PROPORTION IS REPORTED. THE CHARACTERISTICS INCLUDE

NOISE&MURMUR, ARRHYTHMIA, ABNORMAL HEART RATE(ABN. HR) AND VAGUE S2

*in Training-E∗ and Test-E∗ indicates that part of original Training-E and Test-E were utilized in this work.

Fig. 5. Sub-figures (a), (b), (c) and (d) demonstrate the examples
of raw PCG signal, the signal processed by an adaptive Wiener filter,
the signal processed by a 30–60 Hz bandpass filter and the signal
processed by a reverse biorthogonal wavelet filter. The output of each
filter constitute the three channels of input data for temporal framing
network.

length τ . Then the frame-level features can be further mapped
by 2D convolution blocks (Fig. 6) of decoder. The output is then
fed to a bidirectional long short-term memory (Bi-LSTM) layer
to learn sequential characteristics of the frame-level features.

Assuming the mappings of the encoder and decoder are
denoted as f = F(x(n)) and g = G(f), the feature map is
transformed as below after the frame-level decoder:

f → [f0, f1, . . ., fN
τ
], (16)

ŝ(m) = [g(f0), g(f1), . . ., g(fN
τ
)],m = 0, . . .,

N

τ
. (17)

ŝ(m) is defined as the sequence of the logits output from the
model, where s(m) is the ground truth of the heart sound states.

4) Loss Function: According to the periodic nature of heart
sounds, the identification of state for each frame is determined
not only based on the features but the state transition information
between the current and preceding frames. Therefore, the loss
in the TFAN is the combination of the classification loss and the
state transition loss between the current frame and the previous
frame:

L(y, ŷ) = − 1

T

1

N

T∑
τ=1

N∑
i=1

{
C1 × yiτ log ŷiτ

+ C2 ×
yiτ + yi(τ−1)

2
log

ŷiτ + ŷi(τ−1)

2

}
, (18)

where y and ŷ represent the annotated state and the predicted
mask of the frame, respectively. T and N are the number of
frames and the number of heart sound states, separately, which
T = 100 and N = 4 in the TFAN-based method. yi0 and ŷi0
are padded as the ground truth and the predicted logit of the first
frame. The weighting parameters C1 and C2 could help adjust
the constraint degree of the state transition information and the
features of each frame in state prediction. In the TFAN-based
method, C1 = 1 and C2 = 2.
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Fig. 6. The architecture of the proposed TFAN. The PCG signal is framed into multi-frames after feature mapping in the Encoder. Then the whole
frames in one batch generate a new batch of features to be input into the decoder. The final outputs are the predicted logits of four states in each
frame.

Fig. 7. The padding strategy of the convolution operation in temporal
residual block. The purpose using the above padding pattern is to
maintain the dimension while feature mapping.

5) Dynamic Inference: Since the length of the input data of
our model is fixed, the heart sound recording needs to be divided
into segments for dynamic inference. In order to minimize the
impact on segmentation of data around slicing boundary, 50%
overlapping windows are adopted. For the overlapping windows,
the logits of different states are simply averaged. If the length
of the remaining recorded data is less than the 50% overlapping
duration, the input segment of fixed length is taken before the last
point. Meanwhile, the logits of the remaining data are retained
and concatenated with the previous results so that all points of
the recording can be detected.

Knowning s(t) ∈ {0, 1, 2, 3}, each element in s(t) corre-
sponds to S1, systole, S2, diastole respectively. The labels are
then one-hot encoded. The outputs from TFAN are the logits of

four states for each frame. Assuming the input data is F and the
length of state sequence after framing is M , the inference step
needs to find out s(m) by argmaxs P (s1, s2, . . ., sM |F ). Since
the total search of s1∼M for the best state sequence required
4M times, the search time complexity would be high when M
is large. The Viterbi algorithm is therefore adopted to shorten
the solving time. Based on the Viterbi algorithm, the inference
method can be transformed to

maxP (s1, . . ., sM |F ) = max {q(v,M)|v} , (19)

where

q(v = j,m) = max {q(v = i,m− 1)× a(i, j,m)|i} , (20)

for v = 0, 1, 2, 3 and i = 0, 1, 2, 3. Note that q(v,M) represents
the maximum probability for the state sequence ending with v,
and a(i, j,m) defines the transforming probability from state i
at step m− 1 to state j at step m. For heart sound states, the
state transition probability matrix is given by

A =

⎡
⎢⎢⎢⎢⎣
a11 a12 · · · a14

a21 a22 · · · a24
...

...
...

...

a41 a42 a43 a44

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0.5 0.5 0 0

0 0.5 0.5 0

0 0 0.5 0.5

0.5 0 0 0.5

⎤
⎥⎥⎥⎦ .

(21)
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The predicted state sequence s is inferred by the following
function

sm = argmax
v

q(v,m). (22)

IV. EXPERIMENTS

The proposed segmentation methods were compared with
two methods appeared in the literature. Namely, the BiGRNN-
based method using spectrogram and envelop features described
in [29] and the LR-HSMM method, which is currently consid-
ered as the state-of-art PCG segmentation method. For fairly
comparing the performance of TFAN and BiGRNN, the pro-
posed dynamic inference approach was conducted in both meth-
ods.

Besides, as a generative model, LR-HSMM is essentially
trained to explicitly model the probability distribution of each
heart sound state given four extracted features on each time
step. Therefore, the LR-HSMM method is not sensitive to
the size of training set. In the previous study, LR-HSMM is
trained by recordings from only 60 patients [18]. Instead, for
DL-based methods, all-round data sets are generally required for
precisely learning data distribution. Such as [29], the training
set for BiGRNN consisted of recordings randomly selected
from Training-B˜F of the challenge. In order to improve the
extensiveness of DL-based methods, we introduced the framing
module in the proposed TFAN, converting estimation of state
sequence to estimation of state on each time step. For finding
out the influence of various feature learning approaches on seg-
mentation and the capacity of the proposed method in few-shot
learning, we limited the number of training recordings.

The experiments comparing the performances of the three
methods were conducted in two scenarios. The first scenario
was to test the methods on Training-A∗ and other independent
sub data sets from 2016 PhysioNet/CinC Challenge. The second
scenario was to test on the data sets of three difficulty levels
(LEVEL-I, LEVEL-II and LEVEL-III).

A. Training Setup

Since the gold-standard reference positions of onsets of S1
and S2 sounds were derived from the synchronous ECGs [18],
to ensure the preciseness of the experiment, the training set was
consisted by heart sound recordings with synchronous ECGs
splitted from Training-A. The ultimate size of training set was
restricted to 50 recordings for all the methods, and the remaining
recordings were utilized as Training-A* for testing.

Five-fold cross-validation was adopted as the training ap-
proach. For ensuring the recording used for validation is not used
to train, 50 heart sound recordings were split into 40 recordings
for training and 10 recordings for validation in each fold at
first. Then the heart sounds in training and validation set were
pre-processed and sliced into 2 s segments for neural network
training. After five-fold cross-validation training, the model with
best performance on the validation fold was chosen.

The loss functions of BiGRNN and TFAN were unified into
the proposed one. Weights of both models were updated by the
Nesterov Momentum optimizer with factor of 0.9 and learning

rate of 0.001. In order to avoid overfitting, the following early
stop strategy was adopted. When the model failed to achieve the
best validation accuracy in 20 consecutive epochs, the training
is terminated.

B. Evaluation Metrics

To evaluate the performance of the TFAN-based method
against the LR-HSMM method, three measurements are con-
sidered, which are defined as:

SE =
TP

TP + FN
× 100%, (23)

P+ =
TP

TP + FP
× 100%, (24)

F1 =
2× SE × P+

SE + P+
× 100%, (25)

where TP (true positive), FP (false positive) and FN (false
negative) are determined by the following rules [23]:

Let y = y0, y1, . . ., yi, . . .yN denotes the manually annotated
onset positions for one of the four heart sound states while ŷ rep-
resents the state onsets based on the predicted states ŝ. Assuming
the tolerance parameter is σ, the predicted segmented onset is
expected to appear in the time region yi − σ ≤ ŷi < yi + σ and
should not in the time interval yi + σ ≤ ŷi < yi+1 − σ. N1 and
N2 would denote the counted numbers of the predicted start
positions within the two time intervals. Therefore, a successful
prediction happens whenN1 = 1 andN2 = 0. TheTP ,FP and
FN are then counted as:

TP = TP + 1, if N1 > 0, (26)

FP =

{
FP +N1 − 1, if N1 > 1,

FP +N2, if N2 > 0,

FN = FN + 1, if N1 = 0. (27)

The tolerance parameter σ was set to 100 (ms) to evaluate
different heart sound segmentation methods [18]. The tolerance
is based on the ECG R-peak detection tolerance of 150 (ms) [38],
which, as is approximately the length of the fundamental heart
sounds, is shortened to 100 (ms).

Significance testing was performed using a two-sided paired t-
test on theF1 scores from LEVEL-I, LEVEL-II and LEVEL-III.

V. RESULTS

The gross performance results of the LR-HSMM method, the
BiGRNN-based method and the TFAN-based method on all the
test sets were presented in Table IV. The TFAN-based method
was tested with and without the adaptive Wiener filter. Table IV
illustrates the performance for the combined four states (S1,
systole, S2 and diastole), as well as the F1 scores for each state
separately to give an indication of performances on different
states.

The average performance of the TFAN-based method,
the BiGRNN-based method and the LR-HSMM method on
LEVEL-I, LEVEL-II and LEVEL-III were reported in Table V.
These gross scores were calculated on a per recording basis,
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TABLE IV
TOTAL EXPERIMENTAL RESULTS (%) OF THE LR-HSMM METHOD, THE BIGRNN-BASED METHOD, THE TFAN-BASED METHOD WITHOUT THE ADAPTIVE

WIENER FILTER AND THE TFAN-BASED METHOD WITH THE ADAPTIVE WIENER FILTER (PROPOSED) ON ALL OF THE DATA SETS FROM THE 2016
PHYSIONET/CINC CHALLENGE. THE METRICS WERE CALCULATED FROM THE TOTAL NUMBER OF TP , FP AND FN IN EACH DATABASE

∗ in Training-A∗ indicates that the 50 recordings in training set were excluded from Training-A for testing.
∗ in Training-E∗ and Test-E∗ indicates that part of original Training-E and Test-E were utilized for testing.
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TABLE V
STATISTICAL RESULTS (%) OF THE LR-HSMM METHOD, THE BIGRNN-BASED METHOD AND THE TFAN-BASED METHOD AMONG ALL THE RECORDINGS IN

LEVEL-I, LEVEL-II AND LEVEL-III. THE PERFORMANCE METRIC MEANS AND STANDARD ERRORS ARE COMPUTED
OVER EACH RECORDING OF THE DATABASE RESPECTIVELY

Fig. 8. F1 measurements of the LR-HSMM method, the BiGRNN-based method and the TFAN-based method on databases with three levels of
difficulty.

calculating the different metrics for each recording, then average
over recordings in each of the data sets. The standard error of
the averages results was also shown.

Fig. 8 illustrated the discrepancy of the performance stability
over each heart sound recording across the TFAN-based method,
the BiGRNN-based method and the LR-HSMM method on
LEVEL-I, LEVEL-II and LEVEL-III.

1) Comparison With the LR-HSMM Method: According to
Table IV, the TFAN-based method outperformed the LR-HSMM
method on most of the test sets, especially on Training-C,
Training-D, Training-F, Test-C, Test-D and Test-I. The LR-
HSMM method achieved the total F1 score of 89.59% on
Training-C, 94.43% on Training-D, 89.01% on Training-F,
89.97% on Test-C, 94.00% on Test-D, 96.18% on Test-I, while
an enormously improvement can be seen for the TFAN-based
method with the F1 score of 94.71%, 96.80%, 92.55%, 96.49%,
98.90% and 98.70% respectively. However, the total F1 score
of the TFAN-based method on Test-B is slightly lower than
LR-HSMM (96.25%), which was 94.97% without the adaptive
Wiener filter and 94.09% with the adaptive Wiener filter.

In Table V, a significant improvement of performance on
the TFAN-based method compared to LR-HSMM could be
observed On Level-II and Level-III (94.17% to 87.56%, p <
0.0001 and 91.31% to 78.46%, p < 0.0001). In comparison of
standard errors, the TFAN-based method reduced the standard
error by at least a factor of two comparing to the LR-HSMM
method.

Fig. 9 showed two examples of automatically segmented
heart sound recordings by the TFAN-based method and the
LR-HSMM method. Repeated mistakes happened in Fig. 9(a)
and (b) for the LR-HSMM method when segmenting PCG
signals of arrhythmia and tachycardia.

2) Comparison With the BiRNN-Based Method: According to
Table IV, the TFAN-based method outperformed the BiGRNN-
based method on the whole data sets. Their overall F1 scores
approximated on Training-A∗, Training-D, Test-C and Test-D.
Meanwhile evident improvement in performance could be ob-
served on Training-B (99.4% to 92.66%), Training-E∗ (97.76%
to 94.37%), Training-F (92.55% to 86.50%), Test-G (95.94% to
92.47%) and Test-I (98.70% to 94.49%).

Table V showed that the TFAN-based method outper-
formed the BiGRNN-based method on LEVEL-I, LEVEL-II and
LEVEL-III. As difficulty of segmentation escalated, the average
F1 scores of the TFAN-based method increased by around 2%
compared to the BiGRNN-based method (94.17% to 92.63%
on LEVEL-II and 91.31% to 88.45% on LEVEL-III). Note that
the both methods showed comparable stability on each data set
based on the standard errors reported in Table V.

3) Comparison of DL-Based Methods and the LR-HSMM
Method: The BiGRNN-based method and the proposed TFAN-
based method were both DL-based methods, sharing the loss
function and inference function in our experiments. In Table IV,
the DL-based methods performed better on Training-C and
Test-C compared to the LR-HSMM method. And the both
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Fig. 9. Example of segmented pathological PCG signal with arrhyth-
mia (a) and tachycardia (b) using the LR-HSMM method and the TFAN-
based method. The four states of the heart cycle, S1, systole, S2,
diastole, are represented by the staircase plot with the value of 0, 0.25,
0.5, 0.75 respectively.

methods failed to exceed the segmentation performance of the
LR-HSMM method on Test-B. Moreover, according to Table V
and Fig. 8, the DL-based methods provided noticeable im-
provement to the segmentation performance on LEVEL-II and
LEVEL-III.

4) Evaluation of Adaptive Wiener Filter: The introduction of
the adaptive Wiener filter in the TFAN-based method resulted in
better performance on most of the test sets (except Training-C
and Test-B), especially with a nearly 3% increase on Training-F.
For Training-C and Test-B, the adaptive Wiener filter caused
slightly drop of around 1% on performance when segmenting
S2 and diastole.

VI. DISCUSSION

The results reported in Section V provide a comprehensive
comparison between the TFAN-based method, the LR-HSMM
method and the recent BiGRNN-based method. From Table IV
we can see that the TFAN-based method matched or outper-
formed the LR-HSMM method except for Test-B. The same

situation happened to another DL-based method, the BiGRNN-
based method. We hypothesize this is because Test-B is sig-
nificantly different from the rest of the data, and in some way
contains unusual noise or timing in the S2 and diastole periods
(where the performance was most affected).

Notably, the characteristics statistics of each data set reveal
that the majority heart sound recordings in Training-B and
Test-B have obscure S2 sounds (Table II). It may be caused
by contamination of noise and murmur or the stethoscopes with
poor sensing performance. Since the TFAN-based method do
not use a probability distribution to constrain the duration of
the states, as well the BiGRNN-based method, the methods
may have failed to locate S2 unlike the LR-HSMM which
can infer the most probable location even in high noise (the
sensitivity-specificity trade-off).

The performances of the DL-based methods and the LR-
HSMM method were both outstanding when dealing with heart
sounds from patients with normal sinus rhythm. Therefore, the
global average overall F-scores of the three methods are both
in the mid 90’s, with the TFAN-based method (F1 = 96.72%)
outperforming the BiGRNN-based method (F1 = 94.18%) and
the LR-HSMM method (F1 = 94.56%). For data sets containing
a certain amount of heart sound recordings with abnormal heart
rhythms, such as Training-C, Training-D, Training-F and Test-C,
we observe that the DL-based methods are always superior to
the LR-HSMM method. The examples in Fig. 9 further highlight
the distinctions.

From Fig. 9(b), we observe that although the TFAN-based
method miss detects the S1 sound at the beginning, the following
segmentation will be corrected in time. Unlike the TFAN-based
method, the LR-HSMM method always fails to detect events
when the intervals were irregular or incompatible with the prior
probabilistic distribution of the state duration. This is a signifi-
cant result, since we are looking to diagnose abnormality and the
DL-based methods (TFAN and BiGRNN) are more applicable
in real-world clinical environment.

Utilization of adaptive Wiener filter in the TFAN-based
method was effective in most of the situations except for
Training-C and Test-B, which led to a slight drop in performance
for segmenting S2 and diastole. The most likely reason is that
the adaptive Wiener filter may attenuate the weak murmurs and
disappearing S2 sounds. This can be improved by redesigning
the Wiener filter to include these specific features in the pass
band.

The improvement of performance was reinforced when the
three methods were tested on the data sets with different dif-
ficulty levels (LEVEL-I, LEVEL-II and LEVEL-III). We re-
fer to the results reported for LEVEL-III, with the TFAN-
based method (F1 = 91.31%) outperforming the LR-HSMM
method (F1 = 78.46%) and the BiGRNN-based method (F1 =
88.45%). Moreover, according to Table V and Fig. 8, we ob-
serve that the stability of the TFAN-based method and the
BiGRNN-based method is superior to the LR-HSMM method
in segmenting complicated heart sounds.

The BiGRNN-based method matches the TFAN-based
method on a certain number of data sets with relatively
higher signal quality. But obviously, the generalization of the
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BiGRNN-based method is inferior to the TFAN-based method.
In comparison of model size, the weight file of TFAN is 2.3 Mb
with 290,453 parameters, superior to BiGRNN model, which is
8.1 Mb with 1,016,805 parameters. Considering the both meth-
ods shared the proposed loss function and the designed dynamic
inference approach, the advantage of TFAN over BiGRNN is in
model structure.

The proposed framing module in TFAN slices the feature map
into frames after the encoder (see Section III-B). Then the de-
coder implicitly learns the conditional probability distribution of
state given encoded feature matrix for each time step. Comparing
to BiGRNN, this structure enables TFAN to be more flexible
in learning the decision boundaries between distributions of
different heart sound states and brings the advantage of dealing
with out-of-distribution data. Therefore, although the training
set was limited into 50 recordings, the TFAN-based method still
achieved the best performance.

The inner framing operation is also equivalent to incorporat-
ing the feature transformation of the signal during the model
learning process. On the premise of ensuring the time resolution
as much as possible, the feature expression dimension in each
frame is improved. Unlike non-adaptive static feature extraction
methods, such as envelop filters and spectrogram transform, this
structure makes the model capable of capturing the features of
the inter-state variability and the state transition information
dynamically. This results in a high sensitivity for detecting the
onsets and offsets of S1 and S2 precisely and reduces errors
introduced by other heart sounds (e.g. S3) and noise. Moreover,
the proposed TFAN-based method does not introduce the current
error information into subsequent calculations for identifying the
S1 and S2 in the next cycle.

However, there are two key limitations to the TFAN-based
method. Firstly, the TFAN-based method was prone to missing
weak or disappearing S2 sounds and identified the subsequent S1
sound as S2 in such cases. Secondly, the TFAN-based method
tended to falsely identify some brief or transient noise as S1
or S2 sounds if the noises were similar to S1 or S2. This is
basically an inherent problem of any classification technique,
although with enough data we expect to be able to remove such
events that appear at implausible times in the sequence of states,
considering all pathological states.

VII. CONCLUSION

This paper proposed a novel method for heart sound seg-
mentation of S1, systole, S2 and diastole. The method built up
a frame-level feature classifier for the four components by an
original temporal framing network. The study was focused on
how to incorporate the state transition information into algo-
rithm without using HMMs. The introduction of state transition
loss and dynamic inference effectively addressed the problem
within one model. Moreover, the TFAN-based method did not
require explicit modeling of timing and was therefore able to
generalize to arrhythmia and other high variability recordings
more effectively than the current state of the art. Even though
the training set was restricted to a small database with 50
single-source recordings randomly selected from Training-A, it

was noted that the TFAN-based method provided a substantial
improvement, particularly for more difficult cases, and on data
sets not represented in the public training data. Future work
will examine how increasing the number of training patterns
and modeling the distribution of latent space to improve the
performance. However, we note that the more data we use, the
more we must use lower quality data, or make enormous effort
to improve the labels.

Further work is also required to understand how this approach
will provide improved diagnostic performance, although it is
logical to assume better segmentation will lead to improved
diagnostics.
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