
 
 

 

 
Entropy 2021, 23, 648. https://doi.org/10.3390/e23060648 www.mdpi.com/journal/entropy 

Article 

Influence of Ectopic Beats on Heart Rate Variability Analysis 
Lina Zhao 1, Peng Li 2, Jianqing Li 1,* and Chengyu Liu 1,* 

1 The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering,  
Southeast University, Nanjing 210096, China; 101102013@seu.edu.cn 

2 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School,  
Boston, MA 02115, USA; pli9@bwh.harvard.edu 

* Correspondence: ljq@seu.edu.cn (J.L.); chengyu@seu.edu.cn (C.L.); Tel./Fax: +86-25-8379-3993 (C.L.) 

Abstract: The analysis of heart rate variability (HRV) plays a dominant role in the study of physio-
logical signal variability. HRV reflects the information of the adjustment of sympathetic and para-
sympathetic nerves on the cardiovascular system and, thus, is widely used to evaluate the functional 
status of the cardiovascular system. Ectopic beats may affect the analysis of HRV. However, the 
quantitative relationship between the burden of ectopic beats and HRV indices, including entropy 
measures, has not yet been investigated in depth. In this work, we analyzed the effects of different 
numbers of ectopic beats on several widely accepted HRV parameters in time-domain (SDNN), fre-
quency-domain (LF/HF), as well as non-linear features (SampEn and Pt-SampEn (physical thresh-
old-based SampEn)). The results showed that all four indices were influenced by ectopic beats, and 
the degree of influence was roughly increased with the increase of the number of ectopic beats. 
Ectopic beats had the greatest impact on the frequency domain index LF/HF, whereas the Pt-
SampEn was minimally accepted by ectopic beats. These results also indicated that, compared with 
the other three indices, Pt-SampEn had better robustness for ectopic beats. 
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1. Introduction 
The concept of heart rate variability (HRV), the tiny fluctuations in beat-to-beat heart 

rate, was first proposed by Hon and Lee in 1965 [1]. It is an important index to evaluate 
the functional status of the cardiovascular system, as well as the various physiological and 
clinical conditions, reflecting the ability of cardiovascular autonomic regulation [2]. HRV 
is based on the analysis of RR intervals from the beats generated by the sinoatrial node 
and can be analyzed in many different ways, including time- and frequency-domain anal-
yses and non-linear analyses [3]. HRV can be used in the evaluations of different cardio-
vascular diseases, such as arrhythmia [4],acute myocardial infarction [5], coronary heart 
disease [6], and hypertension [7]. However, bias can be introduced in HRV analysis due 
to artifacts. A typical example of biological artifacts is ectopic beat [8], which is not gener-
ated by the sinoatrial node and has shown to significantly bias the analysis of HRV [9–11]. 

The Task Force of the European Society of Cardiology and the North American Soci-
ety of Pacing Electrophysiology recommended interpolation methods such as linear re-
gression or similar algorithms on editing ectopic beats or on post-processing its autocor-
relation function may decrease this error [4]. Exclusion of ectopic segments of RR interval 
time series from the analysis has been used, but this technique may still bias HRV results 
if ectopic beats are causally associated with changes in autonomic tone. Lippman et al. 
assessed three methods (deletion, linear and cubic spline interpolation, non-linear predic-
tive interpolation) for correcting for ectopy and found deletion and non-linear predictive 
interpolation performed superiorly to linear or cubic spline interpolation, which overesti-
mated or underestimated frequency-domain HRV indices [12]. Wen and He proposed a 
method for predicting the RR interval value at an ectopic beat time based on weight 
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calculation and slope estimation of preceding normal RR intervals and demonstrated the 
efficiency on power spectrum density (PSD) estimation [13]. Mateo and Laguna also de-
veloped a method for dealing with the PSD estimation of the HRV by means of the heart 
timing signal when ectopic beats are present [14]. Although many methods for detecting 
and editing ectopic beats have been proposed, there is not a widely agreed conclusion on 
how to efficiently handle them to obtain accurate HRV indices. The lack of such a guide-
line may partially be due to different sensitivities of HRV indices to the burden of ectopic 
beats [15,16]. For example, Ahyoung and Hangsik quantitatively analyzed the effect of 
ectopic beats on HRV indices in resting condition, and their results showed that the tradi-
tional time-domain and frequency-domain indices obtained after ectopic beats interpola-
tion differed significantly from those prior to the interpolation even when the portion of 
ectopic beats is low [17]. 

Unlike traditional time-domain and frequency-domain HRV indices, entropy is a 
newly developed non-linear measure in the past thirty years that exhibits good perfor-
mance on short-term physiological signal analysis [18,19]. Entropy is a valuable tool for 
quantifying the complexity or irregularity of cardiovascular time series [20]. There are 
various algorithms established for performing the entropy analysis, such as approximate 
entropy (ApEn) and sample entropy (SampEn). The SampEn has been proved more stable 
and consistent statistically than ApEn since SampEn excludes the self-matching in its cal-
culation [21,22], and there are also various improvement methods based on ApEn and 
SampEn [23,24]. Ectopic beats can contaminate the entropy calculations as well [17,25]. 
The quantitative relationship between the burden of ectopic beats and HRV indices, in-
cluding entropy measures, has not yet been investigated in depth. 

Therefore, in this work, we aimed to examine the effect of the burden of ectopic beats 
on different HRV indices, including traditional time- and frequency-domain measures as 
well as entropy measures, and to compare these influences between patients with conges-
tive heart failure (CHF) and normal sinus rhythm (NSR) subjects. 

2. Methods 
2.1. Data and Preprocessing 

The data used in this study were from the free-access PhysioNet/MIT-BIH RR Inter-
val Databases (http://www.physionet.org, accessed on 1 September 2015) [26]. There 
were two RR interval databases: the NSR RR Interval Database (54 subjects with normal 
sinus rhythms and aged from 29 to 76 years), and the CHF RR Interval Database (29 sub-
jects aged from 34 to 79 years, with New York Heart Association (NYHA) CHF diagnose 
classes I, II, and III). Each subject had a long-term RR interval recording of nearly 24 h, 
which was from an electrocardiogram (ECG) recorded under a similar level of physical 
activity using a Holter monitor (digitized at a rate of 128 Hz). Beat annotations were ob-
tained by automated analysis with manual review and correction. The long-term RR in-
terval records were cut into 5 min segments without overlap. The 5 min RR segments with 
at least one ectopic beat were extracted as ectopic segments in this study. Tables 1 and 2 
summarize the numbers of ectopic-free and ectopic 5 min segments in separate NSR and 
CHF groups from the PhysioNet/MIT RR Interval Database. 

Table 1. Data profile for the normal sinus rhythm (NSR) group from the PhysioNet/MIT RR Inter-
val Database. # Number of. 

Record 
# Ectopic-Free 

5 min Segments 
# Ectopic 

5 min Segments Record 
# Ectopic-Free 

5 min 
Segments 

# Ectopic 
5 min 

Segments 
NSR001 212 58 NSR028 190 95 
NSR002 134 146 NSR029 269 18 
NSR003 247 37 NSR030 229 58 
NSR004 245 33 NSR031 97 191 
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NSR005 89 198 NSR032 99 188 
NSR006 239 40 NSR033 261 14 
NSR007 203 81 NSR034 265 18 
NSR008 237 50 NSR035 258 29 
NSR009 262 25 NSR036 254 28 
NSR010 168 107 NSR037 246 29 
NSR011 195 92 NSR038 251 4 
NSR012 247 40 NSR039 200 87 
NSR013 249 32 NSR040 266 17 
NSR014 175 112 NSR041 253 29 
NSR015 263 24 NSR042 277 10 
NSR016 245 42 NSR043 159 123 
NSR017 22 265 NSR044 17 270 
NSR018 73 213 NSR045 135 149 
NSR019 254 33 NSR046 181 94 
NSR020 172 108 NSR047 266 22 
NSR021 275 12 NSR048 268 21 
NSR022 236 47 NSR049 285 3 
NSR023 253 34 NSR050 285 3 
NSR024 15 272 NSR051 281 6 
NSR025 166 120 NSR052 274 10 
NSR026 243 44 NSR053 269 1 
NSR027 280 5 NSR054 271 8 

Table 2. Data profile for the congestive heart failure (CHF) group from the PhysioNet/MIT RR 
Interval Database. # Number of. 

Record 
# Ectopic-Free 

5 min 
Segments 

# Ectopic 
5 min 

Segments 
Record 

# Ectopic-Free 
5 min 

Segments 

# Ectopic 
5 min 

Segments 
CHF201 240 36 CHF216 250 14 
CHF202 97 150 CHF217 53 228 
CHF203 75 187 CHF218 47 217 
CHF204 0 247 CHF219 236 28 
CHF205 31 245 CHF220 138 143 
CHF206 11 240 CHF221 0 276 
CHF207 1 249 CHF222 1 274 
CHF208 31 257 CHF223 0 274 
CHF209 70 156 CHF224 137 150 
CHF210 16 258 CHF225 97 121 
CHF211 275 11 CHF226 18 257 
CHF212 0 205 CHF227 0 275 
CHF213 7 281 CHF228 71 204 
CHF214 0 204 CHF229 267 20 
CHF215 110 166    

Figures 1 and 2 show the distribution of the ectopic-free and ectopic 5 min RR seg-
ments classified by the number of ectopic beats in both NSR and CHF groups. In the NSR 
group, there were 11,510 ectopic-free segments in total, and 1770, 694, 360, 185, 122, 81, 63, 
43, 42, and 40 ectopic segments with an ectopic beats increase from one to ten, respectively. 
In addition, there were 288 ectopic segments with ectopic beats >10. In the CHF group, 
there were 2279 ectopic-free segments in total, and 796, 493, 395, 283, 225, 207, 201, 191, 



Entropy 2021, 23, 648 4 of 15 
 

 

151, and 137 ectopic segments with an ectopic beats increase from one to ten, respectively. 
Meanwhile, there were 1643 ectopic segments with ectopic beats >10. 

 
Figure 1. Distribution of the ectopic-free and ectopic 5 min RR segments classified by the number 
of ectopic beats in the NSR group. # Number of. 

 
Figure 2. Distribution of the ectopic-free and ectopic 5 min RR segments classified by the number 
of ectopic beats in the CHF group. # Number of. 

The information regarding ectopic beats was manually annotated by experts, which 
were classified as atrial (A) or ventricular (V) beats, depending on the localization of the 
ectopic focus. In each segment, the RR intervals greater than 2 s, but not associated with 
ectopic beats, were removed in order to alleviate the potential influence of noises [27]. 
Figures 3 and 4 show examples of ectopic-free and ectopic RR segments from the two 
groups. The length of each segment was fixed to 5 min. 
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Figure 3. Examples of 5 min RR segments from an NSR subject: (A) 5 min RR segment without 
ectopic beats and (B) 5 min RR segment with premature atrial contraction (ectopic type A). The x-
axes show the real-time window from the raw RR interval recordings, facilitating the readers to 
locate these selected 5 min RR segments. 

 
Figure 4. Examples of 5 min RR segments from a CHF patient: (A) 5 min RR segment without ectopic 
beats and (B) 5 min RR segment with premature ventricular contraction (ectopic type: V). The x-
axes show the real-time window from the raw RR interval recordings, facilitating the readers to 
locate these selected 5 min RR segments. 

2.2. HRV Indices 
The commonly used HRV indices in the time-domain (i.e., SDNN), frequency-do-

main (i.e., LF/HF), and a non-linear index (i.e., SampEn) were studied in this study. In 
addition, in our previous study, a new physical threshold-based entropy (Pt-SampEn) for 
analyzing NSR and CHF groups was developed to improve the poor stability of the 
SampEn method [28]. Therefore, we also included the analysis of Pt-SampEn in this work 
as a comparison. We calculated the above-mentioned four indices for each of the 5 min 
RR segments. 
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1. SDNN: SDNN is the standard deviation of a 5 min RR segment, and was calculated 
as follows: 

SDNN =  ∑ ( − )
 (1)

where  is the th RR interval,  is the mean value of all RR intervals,  
is the number of RR intervals. 

2. LF/HF: The frequency-domain features were calculated using power spectral den-
sity. Prior to the frequency-domain analysis, spline interpolation was used to 
resample the RR intervals time series evenly at 4 Hz. HRV spectrum was produced 
using Burg’s method with an order of 10 [24]. It was then decomposed into two sep-
arate frequency bands: a low-frequency band (LF, 0.04 to 0.15 Hz) and a high-fre-
quency band (HF, 0.15 to 0.4 Hz). The ratio of low-frequency power to high-fre-
quency power (LF/HF) was calculated, which reflected the balance between the sym-
pathetic and parasympathetic (or vagal) activity. 

3. Sample entropy: SampEn is a widely used index for HRV analysis and can reflect the 
inherent complexity or regularity of RR interval time series. The calculation for 
SampEn was summarized as follows [20]:  
For a 5 min RR segment  =  { , , ⋯ , }, given the parameters  and , first 
form the vector sequences ( ), which represented  consecutive  values: ( )  =  [ , , ⋯ , ] (1 ≤ ≤ − ). 
The distance between ( ) and ( ) was defined using the maximum absolute 
difference: ,  =  ( ( ), ( ))  =  max ( − ) (0 ≤ ≤ − 1). 
For each ( ), denote ( ) as (N-m)-1 times the number of ( ) (1 ≤ ≤ −

, ≠ ) that meets , ≤ . Similarly, set ( ) is ( − )  times the number of ( ) that meets , ≤  for all 1 ≤ ≤ − . 
Then SampEn is defined by: SampEn( , , )  =  −ln(∑ ( ) / ∑ ( )). 
In the current study, the parameter settings for SampEn used the recommendation 
from our previous study [22], i.e., embedding dimension = 2  and tolerance 
threshold = 0.10 times the standard deviation (SD) of the time series. 

4. Physical threshold-based SampEn (Pt-SampEn): For entropy analysis, three intrinsic 
parameters (embedding dimension , tolerance threshold , and time-series length 

) needed to be initialized. SampEn was reported not sensitive to the time series 
length if ≥ 200~300 but sensitive to the parameter tolerance threshold. Since pa-
rameter  is based on the length  ( ≈ 10 ~20 ), SampEn was also not sensitive 
to . Tolerance threshold  was difficult to be determined and was recommended 
between 0.10 and 0.25 times the SD of the time series. However, in practice, if the  
value was too small, the number of matched vectors was small, and, on the contrary, 
if the  value was too large, detailed information within the time series was ignored. 
RR interval time series usually have variable SD values, and it is not easy to find an 
appropriate  value to achieve an optimal result. Hence, simply use the suggested 
range of 0.10 to 0.25 times the SD. Herein, a physical threshold  was used to form a 
unified comparison baseline for determining the vector similarity, and, thus, the Pt-
SampEn was developed in our previous study [28].  
As the raw ECG signals were sampled at 128 Hz indicating that the difference be-

tween any two vectors was approximately an integer multiple of 8 ms. Thus, we employed 
an  of 12 ms as the physical threshold [28]. In addition, previous studies suggested that 
using an = 1 could obtain better results for classifying NSR and CHF groups with = 300 [27]. In this study, we kept this suggested = 1  for both SampEn and Pt-
SampEn. 
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2.3. Evaluation Method 
RR intervals associated with ectopic beats contaminate the calculations of HRV indi-

ces. Thus, these RR intervals should be removed from the original RR interval time series. 
For an atrial or ventricular ectopic beat annotation, the two RR intervals before and after 
this ectopic beat were removed. HRV indices that can better tolerate these abnormal in-
tervals are thought to have more stability. In other words, the evaluation should rely on 
the relative change prior to and after the removal of intervals associated with ectopic 
beats. We thus defined the following change rate index C as a criterion to evaluate the 
performance of different HRV indices: C =  × 100%, (2)

where  and  mean the values of the corresponding HRV index before and 
after removing ectopic beats. 

Figure 5 demonstrates the changes of HRV indices before and after ectopic beats re-
moval in a 5 min RR segment of an NSR subject. After four atrial ectopic beats were re-
moved, the results of index C  were: C = 34.00% , C / = 66.88% , C =52.93%, and C = 0.32% . Similarly, Figure 6 demonstrates the similar results 
from a CHF patient. After four ventricular ectopic beats were removed, the results of in-
dex C were: C = 23.20%, C / = 273.20%, C = 71.73%, and C =1.64%. From these two typical examples, we could observe that the changes of indices of 
SDNN, LF/HF, and SampEn were much large after the ectopic beats removal, while the 
change of index of Pt-SampEn was relatively small. 

 
Figure 5. Demonstration of the changes of HRV indices before (A) and after (B) ectopic beats re-
moval in a 5 min RR segment of subject NSR003. The corresponding HRV results were given in 
each sub-figure. “ectopic type: A” means premature atrial contraction. 
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Figure 6. Demonstration of the changes of HRV indices before (A) and after (B) ectopic beats re-
moval in a 5 min RR segment of patient CHF205. The corresponding HRV results were given in 
each sub-figure. “ectopic type: V” means premature ventricular contraction. 

2.4. Statistical Analysis 
We classified the 5 min ectopic RR segments into 11 types based on the number of 

ectopic beats, i.e., ectopic beat number of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and more than 10. To 
ensure the valid number of RR intervals in each 5 min RR segment, the RR segments with 
ectopic beat number > 50 were excluded for the following analysis. First, the four HRV 
index values for each 5 min ectopic RR segment were calculated separately for before and 
after ectopic beats removal. The HRV index results were tested as normal distribution by 
the Kolmogorov–Smirnov test, separately for each ectopic number group, as well as sep-
arately for the two groups. If the HRV index results met the normal distribution, the mean 
(SD) was reported to present the center and dispersion, and a paired t-test was used to 
test the statistical difference between before and after ectopic beats removal. If not, the 
median (interquartile range, IQR) was reported, and a non-parametric test was used. All 
statistical analyses were performed using the Statistical Package for Social Sciences (V19, 
SPSS Inc., Chicago, IL, USA), and a value of p < 0.05 was considered statistically significant.  

3. Results 
All HRV index results (SDNN, LF/HF, SampEn, and Pt-SampEn) from both NSR and 

CHF groups did not meet the normal distribution of the Kolmogorov–Smirnov test. Thus, 
the median (IQR) results were reported. Significant statistical differences of HRV indices 
between before and after ectopic beats removal were observed, as we expected, for any 
ectopic number type as well as for both NSR and CHF groups. However, the new Pt-
SampEn showed the least changes when removing the ectopic RR intervals from the orig-
inal RR segment. 

3.1. CSDNN 
Figure 7 shows the corresponding median (IQR) results of CSDNN for both NSR sub-

jects and CHF patients. SDNN decreased as expected when the ectopic beats were re-
moved, and its change rate index CSDNN significantly increased with the increase of the 
number of ectopic beats. The increasing trend in the two groups was similar. For NSR 
subjects, CSDNN results were 5.2% (2.2–11.4%) when only one ectopic beat was included in 
each 5 min RR segment and increased to 42.1% (26.4–58.8%) when more than 10 ectopic 
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beats were included. For CHF patients, CSDNN results were 5.2% (1.5–13.8%) when only 
one ectopic beat was included and increased to 52.6% (27.3–69.3%) when more than 10 
ectopic beats were included. The CSDNN results from the two groups indicated that the 
influence of ectopic beat burden for SDNN appeared to grow with the increasing number 
of ectopic beats. 

 
Figure 7. Trends of CSDNN under different ectopic beat burdens, i.e., the number of ectopic beats increase from 1 to more 
than 10: (A) NSR group and (B) CHF group. 

3.2. CLF/HF 

Figure 8 shows the corresponding median (IQR) results of CLF/HF for the two groups. 
The change rate index CLF/HF also increased with the increase of the number of ectopic 
beats, and the influence appeared to be more profound compared with that of SDNN. For 
NSR subjects, CLF/HF results were 69.8% (24.5–166.2%) when only one ectopic beat was in-
cluded in each 5 min RR segment and fluctuated to 501.2% (278.1–1091.7%) when more 
than 10 ectopic beats were included. For CHF patients, CLF/HF results were 25.0% (4.7–
102.9%) when only one ectopic beat was included and increased to 291.2% (64.0–609.4%) 
when more than 10 ectopic beats were included. The CLF/HF results from the two groups 
indicated that the frequency-domain index of LF/HF was heavily influenced by ectopic 
beats, and the influence became heavier when the number of ectopic beats increased. 

3.3. CSampEn 
Figure 9 shows the corresponding median (IQR) results of CSampEn for the two groups. 

The change rate index CSampEn still increased with the increase in the number of ectopic 
beats. For NSR subjects, the CSampEn results were 0.3% (0.1–1.6%) when only with one ec-
topic beat and became larger as the ectopic number increased, yielding a maximum value 
of 46.2% (17.1–101.8%) when the ectopic number was more than 10. For CHF patients, the 
CSampEn results were 0.2% (0.04–0.7%) when there was only one ectopic beat and achieved 
maximum results of 65.4% (21.8–154.3%) when the ectopic number was more than 10. 
Variation of CSampEn also had a general increasing trend related to the ectopic numbers, 
indicated by the increased IQR range with the increase in the number of ectopic beats.  
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Figure 8. Trends of CLF/HF under different ectopic beat burdens, i.e., the number of ectopic beats increase from 1 to more 
than 10: (A) NSR group and (B) CHF group. 

 
Figure 9. Trends of CSampEn under different ectopic beat burdens, i.e., the number of ectopic beats increase from 1 to more 
than 10: (A) NSR group and (B) CHF group. 
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3.4. CPT-SampEn 
Figure 10 shows the corresponding median (IQR) results of the new entropy index 

CPt-SampEn for the two groups. CPt-SampEn shows significantly lower values compared with the 
other three indices. For NSR subjects, CPt-SampEn was only 0.3% (0.1–0.6%) when only one 
ectopic beat was included and increased to 6.6% (3.3–11.6%) when more than 10 ectopic 
beats were included. For CHF patients, CPt-SampEn was 0.6% (0.2–1.0%) when there was only 
one ectopic beat and increased to 11.4% (7.6–18.2%) when more than 10 ectopic beats were 
included. The CPt-SampEn results from the two groups indicated that the influence of ectopic 
beat burden on Pt-SampEn appeared to be relatively small. An obvious change in CPt-SampEn 
was only observed from the RR segments with lots of ectopic beats (>10 in this study). 

 
Figure 10. Trends of CPt-SampEn under different ectopic beat burdens, i.e., the number of ectopic beats increase from 1 to 
more than 10: (A) NSR group and (B) CHF group. 

3.5. Comparison of Variances of the Change Rate Index 
Table 3 shows the variances of the four indices before and after ectopic beats removal 

in each ectopic number group. The HRV indices can increase or decrease after the ectopic 
beats were removed, and, herein, we focused on their changes (i.e., standard deviation 
(std)). From Table 3, we could see that, except for some small ups and downs, the std of 
all four change rate indices roughly increased with the increasing number of ectopic beats, 
and among the four indices, the std of CLF/HF was the largest with 730.5% for NSR subjects 
and 388.0% for CHF patients, respectively. The std of CSDNN and CSampEn were also large 
and were 16.4% and 58.3% for NSR subjects, 20.3% and 74.9% for CHF patients. The std 
of CPt-SampEn was relatively small, only 2.3% for NSR subjects and 3.3% for CHF patients. 
These results further confirmed that, compared to other indices, Pt-SampEn had better 
robustness to ectopic beats in each ectopic number group and, thus, had better stability.  
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Table 3. The standard deviation (std) of the change rate index of different HRV indices. # Number of. 

# Ectopic 
Beat 

Variances in NSR Subjects (%), std Variances in CHF Patients (%), std 
CSDNN CLF/HF CSampEn CPt-SampEn CSDNN CLF/HF CSampEn CPt-SampEn 

1 9.3 222.5 29.5 0.4 13.3 177.7 26.7 0.6 
2 12.1 415.3 40.2 0.6 16.9 262.2 41.8 1.1 
3 14.5 547.9 49.2 1.0 18.6 334.2 61.6 1.6 
4 16.3 483.5 55.5 1.2 20.3 385.4 68.2 2.1 
5 16.4 742.1 59.7 1.7 20.8 354.4 71.4 2.4 
6 15.1 520.7 47.9 1.7 21.0 338.2 79.1 2.2 
7 18.5 679.5 55.7 1.3 22.0 356.1 71.2 2.5 
8 18.2 1001.8 65.9 1.9 21.0 375.3 91.2 2.8 
9 21.1 818.6 77.0 2.4 22.0 571.1 86.5 2.7 

10 19.3 1037.3 84.8 3.2 22.2 524.1 92.1 3.4 
>10 19.7 1566.0 75.4 9.4 25.3 589.7 134.0 15.0 

Mean 16.4 730.5 58.3 2.3 20.3 388.0 74.9 3.3 

4. Discussion and Conclusions 
The analysis of HRV provides a useful tool for the evaluation of cardiovascular func-

tions. There are generally three types of methods for HRV analyses: (1) time-domain anal-
yses such as SDNN, RMSSD, SDANN, etc.; (2) frequency-domain analyses such as LF, HF, 
and LF/HF, etc.; (3) non-linear analyses such as the Lorentz model, Markov models, 
coarse-graining spectral analysis, and entropy measure analysis, etc. Ectopic beats are 
generated by additional electrical impulses imposed by other latent pacemakers; in former 
research, we found that ectopic beats might cause bias in HRV measurements, in time-
domain, frequency-domain, and entropy measurement analysis [20]. 

In this study, the effects of different amounts of ectopic beats on four HRV indices 
were explored. The results showed that all four indices changed after the removal of ec-
topic beats, and the relative changes (change rate index C) also increased in general with 
the increase of the burden of ectopic beats. Among them, the frequency-domain index 
LF/HF showed the largest relative changes for both NSR and CHF groups, indicating that 
this index was most seriously affected by ectopic beats and followed by the indices of 
SDNN and SampEn. Index Pt-SampEn reported the least change rate index C results, in-
dicating its better robustness and stability for dealing with the ectopic RR segments.  

Ectopic beats usually lead to sudden changes in RR intervals, and the results showed, 
as indicated above, that the HRV indices LF/HF, SDNN, and SampEn were much more 
sensitive to these sudden changes. However, Pt-SampEn had better robustness for ectopic 
beats than the former three indices. Compared to SampEn, Pt-SampEn used a physical 
meaning threshold [28]. The threshold r value was the most difficult parameter to be de-
termined among all of the three intrinsic parameters [27]. Researchers developed various 
methods for r value selection [29,30], but it seems that different methods perform well 
only under certain circumstances. The concept of the physical threshold was partly from 
a study of AF detection use SampEn [31], and our previous study certified that this phys-
ical threshold could perform well on NSR and CHF RR interval time series with ectopic 
beats [25] since it could avoid invalid entropy values in each RR segment, and a more 
stable specific r value could be determined by the sampling the resolution of physiological 
signals. The reason could be explained by the entropy calculation process. As described 
in the Methods section, the raw ECGs were collected with a relatively low sample rate of 
128 Hz, indicating that the minimum difference for any two RR intervals could be about 
8 ms. As SampEn analyzed the Chebyshev distance between two RR interval time series, 
this distance would be an integral multiple of 8 ms, regardless the truncated error. If the 
threshold r was too small, i.e., smaller than 8 ms, similar vectors would be quite limited 
or even none, leading to invalid results in the SampEn calculation. Considering that the 
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SD of a 5 min RR segment is usually dozens of ms, the traditionally recommended thresh-
old r of 0.1 times SD of the signal had a high probability of being smaller than 8 ms, in-
ducing invalid results in the SampEn analysis. Therefore, the physical threshold-based Pt-
SampEn addressed this point and could avoid invalid entropy values. In addition, we 
observed the change of HRV indices during different burdens of ectopic beats. So it pro-
vided the possibility to use the HRV index as a predictor for the behavior of ectopic beats, 
which was ‘contrary thinking’ regarding the current study. 

Reduced HRV or low HRV is usually regarded as an important prognostic factor for 
predicting sudden arrhythmic death after acute myocardial infarction, as well as for both 
arrhythmic and non-arrhythmic heart diseases, and even for mortality. Thus, there is no 
doubt that enough attention should be paid to accurately quantifying HRV. However, 
several limitations should be mentioned. First, we did not distinguish the non-stationary 
RR segments from the raw RR interval recordings. Magagnin et al. reported the potential 
bias of spectral, symbolic, and entropy HRV indices due to non-stationarities [32]. So there 
was a need to check the stationarity of 5 min RR segments and find ways to reject non-
stationary segments, although the methods of detecting non-stationarities were challeng-
ing. Second, RR interval time series usually exhibit a non-linear characteristic, which ne-
cessitates the use of non-linear methods in order to reveal the different physiological or 
pathological situations in the heart rate. Thus, non-linear analysis methods, such as en-
tropy measures, have been widely studied in the past 10–20 years. However, for special 
tests (the graded head-up tilt), the linear model-based approach for the estimation of con-
ditional entropy was highly related to non-linear model-free (MF) techniques like ApEn 
and SampEn [33], indicating that we should re-recognize the reasonable applications of 
the existing entropy measures. Last, new entropy measures should also be deeply ex-
ploited. Porta et al. proposed a K-nearest-neighbor entropy method to estimate the condi-
tional entropy by considering the control of the loss of reliability of the conditional distri-
butions by pattern length without introducing a priori information, and showed good 
performance on the test of 250-sample RR interval time series [34]. The usefulness of this 
K-nearest-neighbor entropy on the ectopic RR segments should be further studied. We 
identified this point as our future work.  

In conclusion, ectopic beats might cause bias in different HRV measurement indices, 
and the affection trend increased when the ectopic number increased, but Pt-SampEn had 
better performance in time series with ectopic beats due to its physical threshold. 
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