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A B S T R A C T   

Objective: ECG-derived respiration (EDR) methods have been developed during the past decades to obtain 
respiration-relevant information. However, it is still necessary to compare the performance of these methods 
under uniform conditions for reasonable application. Approach: In this paper, the performance of 10 feature- 
based EDR methods was evaluated comprehensively on three aspects: sampling rate, noise, and window 
length. The Fantasia database was used in this study, as it contained ECG signals and simultaneously measured 
respiration signals. The performance was quantified by two parameters: waveform correlation and breathing rate 
(BR) errors. Main results: The BR errors of AMarea, AMQR, AMR were all below 2 beats per minute (bpm) when the 
sampling rate was above 150 Hz, while they decreased sharply by about 60% when the sampling rate was below 
150 Hz. FMRR presented stable performance with an error below 2 bpm at different sampling rates. The effect of 
noise was obviously found in amplitude-based EDR methods, with the maximum decreased by about 40% in 
waveform correlation. For all EDR methods, significant increase of BR errors occurred with the window shorting 
from 32 s to 16 s in the frequency-based technique. In addition, about 30%–40% of the window cannot obtain the 
BR error, calculated based on the time-based technique, within an 8 s window. Significance: We proposed a 
comprehensive and integrated evaluation on typical ECG-derived respiration waveform extraction and respira
tion rate calculation, providing references for algorithm selection based on different requirements.   

1. Introduction 

Respiration is one of the important vital signs, and its functional 
changes have been proven to be diagnostic indicators for different dis
eases [1]. The monitoring and analysis of respiration are a key means to 
detect sleep-relevant disorders (sleep apnea syndrome [2], obstructive 
sleep apnea [3] and mental health (stress, anxiety [4], depression, etc.). 
Currently, airflow sensors, impedance plethysmography [5] and 
inductance plethysmography are used for respiration recording, while 
they are too bulky for comfortable, long-term, dynamic respiration 
monitoring applications [6]. As the most measured vital signal, elec
trocardiogram (ECG) is modulated by respiration in both beat 
morphology and heart rate variability [1]. Therefore, most of the current 
researches focuses on ECG-derived respiration (EDR) waveforms and 
subsequent breathing rate (BR) calculation for clinical applications. 

Although many EDR methods have been proposed based on features 
and filters during the past decades, the feature-based EDR methods have 

received more attention in recent years. The features used to derive 
respiration includes amplitude-relevant features (the area of QRS com
plex [1], R peak amplitude [7], slope-relevant features (the upslope of 
the QRS complex [8], the angle around R wave [9], frequency-relevant 
features (RR interval [10], QRS duration [11], etc.) and baseline 
wander-relevant features (mean value between consecutive troughs [7], 
mean amplitude of troughs and peaks, etc.). An amplitude-based EDR 
method (area of QRS complex) was proposed and tested in 2000 Com
puters in Cardiology Conference Challenge, the comparison result with 
plethysmogram signals (correlation coefficient 0.78) showed that the 
proposed method was effective in respiration extraction [12]. Ruang
suwana et al. [7] proposed and compared three feature-based EDR 
methods (amplitude-based, frequency-based, baseline wander-based), 
the results showed that the frequency-based method and baseline 
wander-based method were similar in effect, and were superior to the 
amplitude-based method. Lázaro et al. [9] proposed three slope-based 
EDR methods (slopes of the QRS complex, angle around R-peak), and 
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tested them in ECG signals under tilt and stress conditions. The BR error 
between the extracted respiration with simultaneously recorded respi
ration were 0.50 ± 4.11% and 0.52 ± 8.99% for the tile test and stress 
test, respectively. These feature-based EDR methods all can effectively 
obtain respiratory information from ECG signals. However, it is still 
necessary to compare the performance of these methods under uniform 
conditions for reasonable employment of methods. 

In order to verify the performance and practicality of these methods 
in different applications, some studies have been conducted to compare 
these proposed feature-based EDR methods. Correa et al. [2] evaluated 
three feature-based EDR method (R peak amplitude, heart rate vari
ability and R wave area) on the Apnea-ECG database, the comparison 
between the extracted respiration and three real respiratory signals 
(oronasal, chest and abdominal inductance plethysmography) showed 
that R wave area-based EDR method could extract more relevant 
respiration waveform (correlation coefficient 0.55). Boyle et al. [13] 
compared the respiration waveforms extracted by six EDR methods from 
ambulatory single-lead ECGs with simultaneously measured respiration 
waveforms by airflow sensor, and they found that RR interval-derived 
EDR method could be used for respiration extraction from dynamic 
single-lead ECG without significant differences from traditional 
methods. Widjaja et al. [14] investigated similarity between the respi
ration waveforms derived from ECGs and simultaneously recorded res
piratory signal, the results showed that R amplitude-based method could 
generate the best respiratory signals (mean square error 0.63). Charlton 
et al. [5] assessed hundreds of algorithm combinations of estimating BR 
from ECG, which referred to more than ten EDR methods. The perfor
mance was compared with impedance pneumography through several 
statistical analysis of BR. The top ranked result was from RR 
interval-based, QR amplitude-based and baseline wander-based EDR 
methods with a bias of 0.0 breaths per minute (bpm). Ten EDR methods 
were used to extract respiration waveform from ECG signals, and the 
derived respiratory rates, wave morphology, and cardiorespiratory in
formation were compared with reference respiratory signals. The results 
on three datasets (Fantasia, Sleep and Driver datasets) showed that QRS 
slope-based method outperformed the other methods under different 
conditions, and indicated that signal quality of ECGs had a crucial effect 
on the performance of EDR methods [4]. Although these studies have 
evaluated different EDR methods under different conditions, more work 
is still needed to study the effect of comprehensive conditions on the 
respiration extraction of EDR methods in order to achieve a uniform 
agreement for reasonable use of these methods. 

In this study, an integrated framework for evaluation on typical EDR 
waveform extraction and respiration rate calculation was proposed, 
which included three aspects: the influence of sampling rate and signal- 
to-noise ratio (SNR) on the EDR waveform extraction, and the influence 
of window length on the BR calculation. Firstly, ten feature-based EDR 
methods were adopted to extract respiratory waveform from ECG signal. 
To evaluate the similarity between the extracted respiratory waveform 
and simultaneously measured respiration waveform essentially, the 
correlation was first compared. Then, BR calculated from the extracted 
respiratory waveform was compared with that from simultaneously 
measured respiration waveform furtherly. All the experiments were 
implemented on Fantasia Database. 

2. Methods 

2.1. Data 

The Fantasia database [15] was used in our study, which contained 
120-min ECG and respiration recordings around the thorax measured 
from 40 healthy subjects. The sampling rates of these physiological 
signals were all 250 Hz. In order to reduce the computational 
complexity, only a continuous first 10-min ECG and respiration signal of 
each recording were analyzed in this work. 

2.2. Signal preprocessing and postprocessing 

To remove the high-frequency components of raw ECG recording, a 
lowpass filter with 35 Hz cutoff frequency was used. Then, the Pan & 
Tompkins algorithm [16] was performed for R-peak detection. There
after, the respiration waveform was extracted from ECG and resampled 
at 5 Hz for additional noise elimination. 

2.3. Respiration waveform extraction 

After preprocessing, the respiration waveform was extracted from 
the filtered 10-min ECG signal. In this study, ten existing feature-based 
EDR methods were adopted for respiration waveform extraction and 
classified into four groups based on amplitude, slope, frequency, and 
baseline wander. The calculation of their corresponding features was 
shown in Fig. 1. 

2.4. Amplitude-based methods (AM) 

(1) AMarea: Sobron et al. [1] defined the closed area of QRS com
plexes from Q-peak to S-peak (as l in Fig. 1) as Feature1 to reflect the 
effect of respiratory on ECG morphology. 

Feature1 =

∫ TS

TQ

VECG(t) − l(t)dt, (1)  

where TQ is onset (Q-peak), TS is offset (S-peak). VECG is the amplitude of 
preprocessed ECG and l is the line connecting Q-peak and S-peak. 

(2) AMQR: The amplitude variation between R-peak and Q-peak on 
ECG (Feature2) was modified by Charlton et al. [5], according to the 
respiratory-induced amplitude variation proposed by Karlen et al. [17]. 

Feature2 = VR − VQ, (2)  

where VR and VQ are the amplitudes of R-peak and Q-peak in a QRS 
complex. 

(3) AMR and AMQ: It was reported that changes in ECG amplitude 
could reflect respiration Ruangsuwana et al. [7], therefore, the ampli
tudes of R-peak and Q-peak were extracted as Feature3 and Feature4 in 
this study. The detailed illustration of these features was shown in Fig. 1. 

2.5. Slope-based methods (SM) 

(1) SMangle: Feature5 was defined by Lázaro et al. [9] as the angle (θR 
in Fig. 1) between the maximal upslope (nU in Fig. 1) and downslope (nD 
in Fig. 1) around R-peak. The general angular expression is defined as 
follows: 

Fig. 1. Demonstrations of the features extracted from ECG for the recovery of 
respiration waveform. Label - indicate the features introduced in section 2.3. 
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θ = arctan
(⃒
⃒
⃒
⃒

nU − nD

1 + nU ∗ nD

⃒
⃒
⃒
⃒

)

, (3)  

For the clinical purpose, the time axis and voltage axis should be 
rescaled to match the particular case of conventional ECG tracings, 
where a speed of 25 mm/s and a gain of 10 mm/mV were used as in 
Romero et al. [18], and formula (3) was changed to equation (4) 
accordingly: 

Feature5 = θR = arctan
(⃒
⃒
⃒
⃒

nU − nD

0.4 ∗ (6.25 + nU ∗ nD

⃒
⃒
⃒
⃒

)

, (4) 

(2) SMQR and SMRS: Apart from the angle formed by upslope (nU) and 
downslope (nD), the slopes themselves could also reflect respiration [8]. 
Therefore, nU and nD were also used in this study as Feature6 and 
Feature7. 

2.6. Frequency-based methods (FM) 

(1) FMQS: The duration of the QRS complex, the time calculated from 
the onset to the offset of the QRS complex, was used as Feature8 to 
demonstrate the frequency modulated feature of respiration on ECG 
[11]. 

Feature8 = TS − TQ, (5)  

where TS and TQ are the time of offset and onset defined by the method 
in this section. 

(2) FMRR: Respiratory sinus arrhythmia (RSA) represented the 
respiration modulation on heart rate [10]. The variation of intervals 
between two consecutive R peaks was adopted as Feature9: 

Feature9 = TRi+1 − TRi , i = 1, 2,…, (6)  

where TRi+1 and TRi are locations of two consecutive R peaks in the ith 
heartbeat. 

2.7. Baseline wander-based methods (BM) 

(1) BMQRS: The area between two consecutive Q-peak was calculated 
as Feature10 referring to the ECG area defined by Ruangsuwana et al. [7]. 

Feature10 =
1

Qi+1 − Qi

∫ Qi+1

Qi

VECG(t)dt, i = 1, 2,…, (7)  

where Qi is the location for the ith Q-peak. 

2.8. Breathing rate calculation 

After obtaining the respiration extracted from the feature-based EDR 
method proposed above, BR was computed on different window length 
as another aspect to evaluate the performance of existing methods. To 
avoid the disturbance caused by redundant frequency component in 
calculating BR, the extracted respiration waveforms were band-pass 
filtered (0.15–0.4 Hz) according to breathing rate range (9–24 bpm) 
[19]. In addition, in order to simultaneously consider the influence of 
frequency domain and time domain on BR calculation, the 
frequency-based and time-based BR estimation methods were adopted. 

2.9. Frequency-based technique 

Considering the improvement in frequency resolution, autore
gressive modelling (AR) [20] with the order of 8 [10] was selected as the 
frequency-based BR calculation method in this study, rather than the 
traditional Fourier-based analysis. The details of AR were given as 
follows: 

x(n) = −
∑p

k=1
akx(n − k) + e(n), (8)  

where x(n) is the output at t = n, x (n − k) is the output at t = n − k, ak is 
the parameter linearly relating the previous values to current values and 
e(n) is the error term. 

To obtain the frequency domain components (poles) of power 
spectrum of respiratory signal, equation (8) was transformed to z 
domain as equation (9). Then, the phase angle (θ) of the pole nearest to 
the unit circle was selected as equation (10). 

H(z) =
1

1 −
∑p

k=1(1 − akz− k)
, (9)  

θ = 2f πΔt, (10)  

where Δt is the sampling interval of the original time series. 

2.10. Time-based technique 

The modified Mason’s algorithm [21] was adopted for its simple 
implementation and high robustness. It indicated the peaks and troughs 
were detected when the gradient changed from positive to negative and 
negative to positive respectively. Then, the peaks less than the mean and 
troughs greater than the means were eliminated [22]. In addition, the 
peaks (troughs) were eliminated if they were within 0.5 s of the previous 
peaks (troughs) [23]. And the respiratory rate was acquired from valid 
peaks and troughs. 

To validate the two BR calculation methods before evaluating the 
performance of EDR methods, the errors of the calculated BR and the BR 
based on manually annotated respiratory peaks were compared. Fig. 2 
shows the BR comparison result between two BR methods with manual 
annotation. The BR was both 16.7 bpm no matter from time-based 
technique and annotated reference (Fig. 2 (a)), as the detected peaks 
of respiratory waveform were consistent with the manually annotated 
ones. The BR error of the frequency-based technique and annotated 
reference was 1.5 bpm, indicating that the calculated BR was clinically 
relevant to the annotated BR as the error was within ± 2 bpm referring 
to van Loon et al. [24]. 

2.11. Effects of three factors on the performance of EDR methods 

In order to evaluate the performances of the existing EDR methods, 
the effects of three different factors on the waveform correlation and BR 
errors were compared: sampling rate, SNR and window length. The 
overall evaluation procedure was illustrated in Fig. 3 and implemented 
based on the open-source toolbox accessible in Charlton et al. [5]. All the 
data processing and computations were executed on a regular PC using 
the MATLAB software framework, v. R2020a (Mathworks, Natick, MA, 
USA). 

2.12. Sampling rate 

Currently, there is no clear standard for the sampling rate of the ECG 
signal used to extract the respiratory waveform, and the sampling rate 
has an important impact on the storage resources and energy con
sumption of the acquisition device. Therefore, the original 250 Hz ECG 
signals from the Fantasia database were down-sampled to 200, 150, 100 
and 50 Hz, and the effect of sampling rate on the performance of EDR 
methods was evaluated. 

2.13. Signal to noise ratio 

With the prevalence of wearable devices, ECG signals are vulnerable 
to noise pollution. Therefore, the influence of SNR on the EDR methods 
was considered in this study. For this reason, different levels of Gaussian 
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noise were added into 250 Hz raw ECG signal according to practice (30 
dB was clean and 15 dB was polluted), and noisy ECG signals with SNRs 
of 30, 25, 20 and 15 dB were obtained. 

2.14. Window length 

The selection of appropriate window length for BR calculation is 
associated with the complexity and accuracy of EDR method. Then, four 
window lengths (64, 32, 16 and 8s) were adopted for BR calculation 
from extracted respiratory waveform, and their results were evaluated 
by two BR methods. 

2.15. Evaluation methods 

The performance of ten EDR methods on extracted respiratory 
waveform and calculated BR was quantified using waveform correlation 
and mean absolute error (MAE). Waveform correlation: To calculate the 
cross-correlation of the extracted respiratory waveform and the simul
taneous measured respiratory signal, the 10-min extracted and 
measured respiratory waveform were divided into 32 s segment firstly. 
Then, the correlation coefficients of each segment were computed 
respectively, and the mean value of the absolute maximal correlation 
coefficient calculated from each 32 s segment was defined as the 
waveform correlation of the 10-min signal. MAE: The BR for extracted 

and measured respiratory waveform was obtained from both time- and 
frequency-based techniques described in section 2.4. Then, the absolute 
errors between the calculated BR and the reference BR were obtained 
according to different window length. The mean value of these absolute 
errors was computed as MAE of the 10-min signal. The definition of MAE 
was described as follows: 

MAE(k) =
1
N

∑N

k=1

⃒
⃒fEDR(k) − fref (k)

⃒
⃒ (11)  

where fEDR(k) and fref(k) are the BR of kth window length of EDR 
waveform and reference respiratory waveform, respectively. 

3. Experiments and results 

3.1. Evaluation results of extracted respiratory waveforms 

To evaluate the performance of the ten EDR methods on respiratory 
waveform extraction, the cross-correlation between the extracted res
piratory waveform and the simultaneous measured respiratory signal 
was calculated and compared (Fig. 4). The detailed comparison result 
was illustrated in Table 1. Fig. 4 (a) demonstrated the comparison results 
of ten EDR methods under different sampling rates. It can be seen that, 
as expected, the waveform correlation of almost all methods reduced as 

Fig. 2. The demonstration of verification results of (a) time-based BR calculation and (b) frequency-based BR calculation. In Fig. 2(a), the detected peak locations are 
marked as red circles, and the manual annotations are marked as green plus signs. In Fig. 2(b), the detected breathing rate is marked as the red circle, and the manual 
annotated breathing rate is located at the green dashed line. 

Fig. 3. The structure of evaluation process. The symbol X stands for corresponded window lengths in each scenario.  
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the sampling rate decreased, except for AMQRS. This phenomenon was 
particularly obvious in amplitude-based EDR methods. In addition, 
AMQR showed the best performance when the sampling rate was greater 
than 150 Hz, and the waveform correlation of FMRR was the largest in 
the range of 150 Hz–50 Hz. The effects of SNR on the performance of ten 
EDR methods was shown in Fig. 4 (b). Similar to the effect of sampling 
rate, the increase in noise added to the raw ECG would reduce the 
waveform correlation of most methods. However, the performance of 
MBQRS was almost unaffected by SNR, which could exhibit stable 
waveform correlation under different noise levels. 

Table 2 illustrated the relative errors of waveform correlation under 

down-sampling/noise adding. It could be seen that the waveform cor
relation of AMarea decreased slightly at 200 Hz and 150 Hz, and dropped 
sharply below 150 Hz (relative error − 36%). However, the relative error 
of BMQRS at different sampling rate were all 0%, indicating that it was 
suitable for applications with stable performance requirements. For 
waveform correlation under noise adding, almost all the relative errors 
of amplitude-based EDR methods were less than − 30% at 15 dB, which 
meant that noise had a great influence on these methods. On the con
trary, the waveform correlation of BMQRS only decreased to − 6% at 15 
dB, which proved the robustness of this method. 

3.2. Evaluation results of breathing rates 

3.2.1. The effects of sampling rate 
Fig. 5 illustrated the MAEs of BR between reference and estimations, 

calculated from time-based method (a) and frequency-based (b) method, 
respectively. It could be seen that the MAEs of AMarea, AMQR and AMR 
were within the ± 2 bpm limitation at the sampling rate larger than 150 
Hz. FMRR was the most stable one, and its MAEs were within the ± 2 bpm 
limitation at all sampling rates. For frequency-domain BR estimation 
(Fig. 5 (b)), the MAEs of these methods were all larger than 2 bpm, and 
all these methods presented a similar performance at each sampling rate. 
The detailed MAEs were demonstrated in Table 3 (see Table 4). 

The relative errors of the MAEs under down-sampling and the orig
inal MAEs were shown in Table 4. It was obvious that the variations of 
relative errors calculated from amplitude-based EDR methods were 
more remarkable than other methods both for time-based BR estimation 
and frequency-based BR estimation. Especially, the MAEs of AMQR and 
AMR increased almost two times from 200 Hz to 50 Hz in the time-based 
estimation, which was 126% and 119%, respectively. 

3.2.2. The effects of noise 
Fig. 6 showed the MAE of proposed EDR methods with the SNR 

decreasing from 30 dB to 15 dB (see Table 4). In time-based BR esti
mation, the MAEs of AMarea, AMQR and AMR were below 2 bpm when the 
SNR is higher than 20 dB. The MAEs of FMRR almost remained 

Fig. 4. The correlation of extracted respiratory and reference waveforms under 
(a) down-sampling and (b) noise adding. The EDR methods are referred to in 
section 2.3. 

Table 1 
Waveform correlations between extracted respiratory and reference waveforms from all EDR methods under down-sampling and noise adding.  

Sampling rate/SNR AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

raw 0.73 0.78 0.74 0.66 0.59 0.53 0.57 0.53 0.71 0.65 
200 Hz 0.71 0.75 0.73 0.66 0.54 0.49 0.53 0.52 0.71 0.65 
150 Hz 0.7 0.7 0.69 0.65 0.48 0.46 0.49 0.49 0.71 0.65 
100 Hz 0.62 0.57 0.6 0.64 0.5 0.48 0.47 0.47 0.7 0.65 
50 Hz 0.47 0.53 0.53 0.55 0.45 0.44 0.48 0.45 0.67 0.65 
raw 0.73 0.78 0.74 0.66 0.59 0.53 0.57 0.53 0.71 0.65 
30 dB 0.62 0.72 0.72 0.63 0.57 0.51 0.55 0.49 0.71 0.64 
25 dB 0.57 0.66 0.69 0.6 0.56 0.5 0.53 0.47 0.71 0.64 
20 dB 0.51 0.57 0.62 0.56 0.51 0.48 0.49 0.45 0.67 0.63 
15 dB 0.47 0.49 0.52 0.5 0.46 0.45 0.46 0.44 0.55 0.61  

Table 2 
Relative errors between waveform correlation under down-sampling/noise adding and the original waveform correlation.  

Down-sampling/Noise adding AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Δraw→200 Hz − 3 − 4 − 1 0 − 8 − 8 − 7 − 2 0 0 
Δraw→150 Hz − 4 − 10 − 7 − 2 − 19 − 13 − 14 − 8 0 0 
Δraw→100 Hz − 15 − 27 − 19 − 3 − 15 − 9 − 18 − 11 − 1 0 
Δraw→50 Hz − 36 − 32 − 28 − 17 − 24 − 17 − 16 − 15 − 6 0 
Δraw→30dB − 15 − 8 − 3 − 5 − 3 − 4 − 4 − 8 0 − 2 
Δraw→25dB − 22 − 15 − 7 − 9 − 5 − 6 − 7 − 11 0 − 2 
Δraw→20dB − 30 − 27 − 16 − 15 − 14 − 9 − 14 − 15 − 6 ¡3 
Δraw→15dB − 36 − 37 − 30 − 24 − 22 − 15 − 19 − 17 − 23 ¡6  
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unchanged at the SNR is higher than 15 dB, and they were all below 2 
bpm. Although BMQRS supplied the most stable performance at different 
SNRs, the MAEs were all out of the ± 2 bpm limitation. In addition, the 
MAEs of these methods were all above 2.5 bpm when estimated by 
frequency-based technique. The detailed MAEs were demonstrated in 
Table 5. 

The relative errors of the noise-added MAEs and the original MAEs 
were shown in Table 6. For most methods, the relative errors varied 
slightly in frequency-based BR estimation compared to those in time- 

based BR estimation. Typically, the MAEs of AMarea and AMQR 
increased by more than 100% from 30 dB to 15 dB. 

3.2.3. The effects of window length 
Fig. 7 illustrated the MAEs of BR between reference and estimations 

calculated from different window length by time-based method (a) and 
frequency-based (b) method, respectively. In Fig. 7 (a), the MAE 
increased gradually in time-domain BR estimation as the window length 
declined from 64 s to 16 s. From all the results, only MAEs of most 
amplitude-based EDR methods were within the ± 2 bpm limitation with 
all adopted window length. Due to a large number of invalid windows, 
the result of the 8 s window was not drawn. In Fig. 7 (b), there was an 
obvious gap between the MAEs from 32 s window length and 16 s 
window length, and the MAEs calculated from each EDR method, under 
the window length around the upper and lower boundary of the gap, 
were almost unchanged. The detailed MAEs were demonstrated in 
Table 7 (see Table 8). 

Table 8 showed the relative errors with the window length 
decreasing from 64 s to 8 s. Almost all the relative errors increased at 
least 20% when the window length decreased from 32 s to 16 s from 
both time-based technique and frequency-based technique. However, 
the relative errors varied greatly in time-based BR estimation compared 
to in frequency-based BR estimation. 

Fig. 8 showed the proportion of windows failing to estimate BR for 
each EDR method under 8 s window length. For most EDR methods, it 
was found that about 30%–40% of the 8 s window could not find enough 
peaks to calculate BR based on time-based technique. Especially, the 
proportion of invalid windows reached about 50% in AMQ and BMQRS. 
Therefore, the remaining results obtained from the valid window could 
not reveal the performance of each method in the 8 s window. 

4. Discussion 

The contribution of this article is to provide objective clarification 

Fig. 5. Mean absolute error based on (a) time-domain BR estimation and (b) 
frequency-domain BR estimation. The EDR methods are referred to in section 
2.3. Five lines in each subfigure represent results obtained from ECG signals 
with a specific sampling rate: grey-raw ECG, blue-200 Hz, orange-150 Hz, 
purple-100 Hz, green-50 Hz. 

Table 3 
MAEs of BR between reference and estimations under down-sampling.  

Sampling rate AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based MAE (bpm) 
raw 1.49 1.3 1.61 2.66 2.3 2.78 2.56 2.8 1.72 2.99 
200 Hz 1.53 1.48 1.69 2.65 2.68 2.9 2.81 3.02 1.58 3.03 
150 Hz 1.65 1.73 1.82 2.61 3 2.98 2.9 3.05 1.58 2.86 
100 Hz 2.07 2.53 2.43 2.56 3 2.9 2.96 3.05 1.57 2.85 
50 Hz 3.26 2.94 3 2.93 3.2 3.23 3.28 3.2 1.87 3.19 

Frequency-based MAE (bpm) 
raw 3.09 2.47 2.64 3.35 3.62 3.82 3.37 3.67 3.08 3.75 
200 Hz 3.25 2.96 3.17 3.54 3.74 3.75 3.63 3.89 3.05 3.33 
150 Hz 3.25 3.25 3.06 3.48 3.49 3.57 3.52 3.57 3.16 3.33 
100 Hz 3.29 3.33 3.29 3.21 3.34 3.34 3.45 3.37 3.18 3.15 
50 Hz 3.89 3.75 4.08 3.65 3.89 3.96 3.83 3.88 3.14 3.83  

Table 4 
Relative errors of the MAEs under down-sampling and the original MAEs.  

Down-sampling AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based relative errors (%) 
Δraw→200 Hz 3 14 5 0 17 4 10 8 − 8 1 
Δraw→150 Hz 11 33 13 ¡2 30 7 13 9 − 8 − 4 
Δraw→100 Hz 39 95 51 ¡4 30 4 16 9 − 9 − 5 
Δraw→50 Hz 119 126 86 10 39 16 28 14 9 7 
Frequency-based relative errors (%) 
Δraw→200 Hz 5 20 20 6 3 − 2 8 6 ¡1 − 11 
Δraw→150 Hz 5 32 16 4 − 4 − 7 4 ¡3 3 − 11 
Δraw→100 Hz 6 35 25 − 4 − 8 − 13 2 − 8 3 − 16 
Δraw→50 Hz 26 52 55 9 7 4 14 6 2 2  
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about the performance of typical EDR methods under practical issues. 
Due to the effectiveness of published EDR algorithms is a concern for 
many researchers and the performance agreement has been hardly 
achieved from current publications, the evaluation of these methods 
could provide other researchers the reference for employing them. 

The ECG is a standard tool for cardiovascular disease diagnosis, 
while it is recorded by medical staff at different sampling rate based on 
their experience. Whether the sampling rate of the ECG signal will affect 

the extraction of the respiratory waveform needs in-depth research. 
O’Brien and Heneghan [25] evaluated the effect of 200 Hz sampling rate 
on the performance of three amplitude-relevant and baseline 
wander-relevant methods, and they found that the respiratory wave
forms extracted from these methods at this sampling rate were corre
lated with simultaneously measured respiratory signal (correlation 
coefficient 0.75). The influence of 250 Hz sampling rate on two ampli
tude- and frequency-based EDR methods were analyzed [26]. The 

Fig. 6. Mean absolute error based on (a) time-domain BR estimation and (b) 
frequency-domain BR estimation. The EDR methods are referred to in section 
2.3. Five lines in each subfigure represent results obtained from ECG signals 
with a certain SNR: grey-raw ECG, blue-30 dB, orange-25 dB, purple-20 dB, 
green-15 dB. 

Table 5 
MAEs of BR between reference and estimations under noise adding.  

SNR AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based MAE (bpm) 
raw 1.49 1.3 1.61 2.66 2.3 2.78 2.56 2.8 1.72 2.99 
30 dB 2.26 1.7 1.78 2.68 2.5 2.69 2.64 3.1 1.79 3 
25 dB 2.64 2.11 1.81 2.73 2.48 2.77 2.69 3 1.74 3 
20 dB 2.95 2.45 2.35 3.03 2.87 2.92 2.98 3.17 1.99 3.13 
15 dB 3.08 3.04 2.95 3.18 3.16 3.3 3.16 3.26 2.86 3 
Frequency-based MAE (bpm) 
raw 3.09 2.47 2.64 3.35 3.62 3.82 3.37 3.67 3.08 3.75 
30 dB 3.79 2.91 2.92 3.36 3.7 3.94 3.6 3.75 3.13 3.84 
25 dB 3.79 3.24 2.96 3.51 3.63 3.65 3.72 4.03 3.07 3.77 
20 dB 3.77 3.48 3.38 3.83 3.72 3.83 3.85 3.97 3.44 3.96 
15 dB 4.01 4.02 3.95 4.09 3.91 4.02 3.97 3.83 3.77 3.82  

Table 6 
Relative errors of the MAEs under noise adding and the original MAEs.  

Noise adding AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based relative errors (%) 
Δraw→30dB 52 31 11 1 9 − 3 3 11 4 0 
Δraw→25dB 77 62 12 3 8 0 5 7 1 0 
Δraw→20dB 98 88 46 14 25 5 16 13 16 5 
Δraw→15dB 107 134 83 20 37 19 23 16 66 0 
Frequency-based relative errors (%) 
Δraw→30dB 23 18 11 0 2 3 7 2 2 2 
Δraw→25dB 23 31 12 5 0 − 4 10 10 0 1 
Δraw→20dB 22 41 28 14 3 0 14 8 12 6 
Δraw→15dB 30 63 50 22 8 5 18 4 22 2  

Fig. 7. Mean absolute error based on (a) time-domain BR estimation and (b) 
frequency-domain BR estimation. The EDR methods are referred to in section 
2.3. Lines in each subfigure represent results estimated within a certain window 
length: blue-64 s, orange-32 s, purple-16 s, green-8 s. 
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waveform correlation between the R-wave amplitude-based method 
extracted respiratory waveform and the airflow sensor recorded respi
ratory waveform reached 0.73, which was consistent with our method 
(waveform correlation 0.74 at 250 Hz). In addition, the breathing error 
was used as another parameter to evaluate the effect of 300 Hz sampling 
rate on the performance of three EDR methods (amplitude-, frequency- 
and baseline wander-based) besides respiratory waveform correlation 
[7]. These studies investigated the effect of specific sampling rates on 
the performance of several EDR methods, which was part of our work. 
Charlton et al. [27] evaluated several filter- and feature-based EDR 
methods with the sampling rate ranging from 500 Hz to 50 Hz. Their 
findings indicated the correlation between EDR signals and the reference 
oral-nasal pressure signals was higher as the sampling rate was higher 
(not up to 250 Hz). Our study could be considered as a continuation and 
extension of their work based on following points: firstly, the evaluation 
of sampling rate was investigated on a different but widely used and 
publicly available database, to realize the verification of consistent 
findings on other datasets. Secondly, the evaluated EDR methods were 
classified into four classes based on amplitude, frequency, slope and 
baseline wander. The performance of EDR methods among different 

classes was furtherly explored in our study. Therefore, the significant 
effects of sampling rate on amplitude-based EDR methods were found. 
Oppositely, the baseline wander-based method provided a relatively 
stable performance. 

The detection accuracy of ECG signal peak is sensitive to noise, and 
ECG signal is susceptible to noise pollution, especially under wearable 
conditions. Therefore, the effect of noise on the performance of ten EDR 
methods was evaluated on three databases with different noise level [4]. 
They found that most EDR methods were sensitive to noise, especially 
for methods of kernel principal component analysis [14], principal 
component analysis [28] and R-wave amplitude [7]. However, this 
evaluation provided the non-specific effect of noise on EDR methods 
since the noise level was based on the sources of data. In our study, white 
Gaussian noise was added to ECG data to quantify the SNR with different 
values and the performance of specific noise level was evaluated. The 
similar result was also observed that the waveform correlation of the 
R-wave amplitude (AMR)-based method decreased by 30% with SNR 
declined to 15 dB. The reason is obvious that the peaks used in 
amplitude-based methods are vulnerable to noise, while 
frequency-based methods focus on limited bandwidth and the remaining 
methods depend on the comprehensive result of data around the peaks. 
To compare the effects of noise level on performances of several BR 
estimation methods, Adami et al. [29] added noise to generate signals 
with SNR of 0 dB, 5 dB, 10 dB, 20 dB, 40 dB, which realized the per
formance evaluation through BR errors in both low and high noise sit
uations. However, the extracted respiratory waveform morphology was 
not attracted attention in their evaluation, which was valuable for 
evaluating the performance of EDR methods and provided the guarantee 
for reliable BR estimation. Therefore, our study realized the perfor
mance evaluation in essence. In our study, prior to BR calculation, the 
waveform correlation between EDR signals and reference signals was as 
a primary parameter to evaluate effects of noisy data with the SNR of 15 
dB–30 dB. Moreover, the consistent step of 5 dB in the smaller SNR range 
resulted in a high resolution of the performance variation, which could 
capture the exact and detailed performance information caused by 
noise. 

For quasi real-time and mobile applications, the window length 

Fig. 8. Proportion of 8 s windows failing to estimate BR in time domain.  

Table 7 
MAEs of BR between reference and estimations under window length shorting.  

Window length AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based MAE (bpm) 
64 s 1.26 0.88 1.38 2.53 1.68 2.2 2.24 2.3 1.22 2.76 
32 s 1.49 1.3 1.61 2.66 2.3 2.78 2.56 2.8 1.72 2.99 
16 s 1.94 1.59 1.92 2.82 2.9 3.29 2.97 3.46 2.14 3.15 
8 s – – – – – – – – –  
Frequency-based MAE (bpm) 
64 s 2.98 2.69 2.48 3.6 3.45 3.37 3.37 3.86 2.78 3.61 
32 s 3.09 2.47 2.64 3.35 3.62 3.82 3.37 3.67 3.08 3.75 
16 s 3.74 3.57 3.54 4.11 4.45 4.69 4.46 4.57 3.83 4.2 
8 s 4.08 3.57 3.54 4.26 4.81 5.04 4.89 4.94 3.99 4.28  

Table 8 
Relative errors of the MAEs under window length shorting and the original MAEs.  

Window shorting AM SM FM BM 

AMarea AMQR AMR AMQ SMangle SMQR SMRS FMQS FMRR BMQRS 

Time-based relative errors (%) 
Δ64 s→32 s 18 48 17 5 37 26 14 22 41 8 
Δ64 s→16 s 54 81 39 11 73 50 33 50 75 14 
Δ64 s→8 s – – – – – – – – – – 
Frequency-based relative errors (%) 
Δ64 s→32 s 4 − 8 6 − 7 5 13 0 − 5 11 4 
Δ64 s→16 s 26 33 43 14 29 39 32 18 38 16 
Δ64 s→8 s 37 33 43 18 39 50 45 28 44 19  
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related algorithm complexity needs to be considered. Major evaluations 
on effects of window length focus on the duration between 16 s and 300 
s [17,30–32]. Some researchers [30,33,34], tested the influence of 32 s 
and 64 s window length on the MAEs of calculated BR on the CapnoBase 
and BIDMC datasets, and they observed that the MAE decreased with the 
increase of the window length. Charlton [35] carried out the experiment 
on the RRest-healthy dataset to optimize more than ten BR estimations 
for different window length (25 s, 32 s, and 50 s) of the respiratory 
signal. The findings indicated a lager duration provided the limited 
improvement in performance. Moreover, Karlen et al. [17] investigated 
the effect of three window length (64 s, 32 s and 16 s) on the perfor
mance of BR estimation from the photoplethysmogram, they also 
observed a positive trend for a lower error rate in larger windows, which 
was similar to our observation in BR estimation from ECG. However, 
little attention has been paid in furtherly shorted window length, which 
is of importance on evaluating the performance and option of appro
priate window length for time-based BR techniques. Therefore, the 8 s 
window length was also evaluated in this paper. It is worth noting that 
for most EDR methods, about 30%–40% of the window cannot obtain 
the BR result, calculated based on the time-domain technique, within an 
8 s window. The reason lies in the difficulty to find enough peaks for BR 
calculation in such a short window. 

Apart from the typical feature-based EDR methods, filter-based and 
machine learning methods are other categories for respiration extrac
tion. Orphanidou [36] proposed a filter-based EDR method which 
employed ensemble empirical mode decomposition to identify respira
tory mode from ambulatory ECG. The validation of this technique with 
respiratory Impedance pneumography showed a mean error of 1.8 bpm 
and a relative error of 10.3%. However, the mode mixture may occur 
with empirical mode decomposition applied, which meant respiratory 
component could be distributed in multiple intrinsic mode functions 
resulting in the uncertainty of extracted respiratory signal. In Ref. [5], 
the comparison between both feature- and filter-based methods was 
made and the top performances for respiration extraction were all given 
from feature-based techniques. Compared to conventional methods, few 
studies on EDR algorithms are based on feature-learning algorithms as 
far. Ravichandran et al. [37] introduced a deep learning network for 
extracting the respiratory signal from PPG and compared it with two 
conventional amplitude- and frequency-based EDR methods. The simi
larity and reported errors of extracted respiration from proposed 
network were found to be better. Whereas, results of machine learning 
algorithms depend highly on the training datasets, which means 
different training datasets would give inconsistent results. In addition, 
the performance of this kind of learning algorithms is decided by the size 
of training data, which certainly increases computation complexity for 
more accurate results. Oppositely, the feature-based EDR methods we 
evaluated are obviously simpler, which requires low computation 
complexity. Therefore, these methods could be realized on the low 
power platform, especially appropriate for wearable devices. 

5. Conclusion 

An integration framework of performance evaluation was carried out 
systematically to investigate the effects of sampling rate, noise level and 
window length on performance of EDR methods and BR calculations. 
The evaluated EDR methods were classified into 4 groups: amplitude- 
based, frequency-based, slope-based and baseline wander-based. The 
effects of sampling rate and noise on amplitude-based EDR methods 
were more significant in contrast to other groups. Besides, the perfor
mance of BR was estimated and compared by time-based and frequency- 
based methods. It was found that the calculated MAEs from the time- 
based technique were less than those from the frequency-based tech
nique, which was consistent with the result of Charlton et al. [5]. The 
reason may be that the respiratory signal for the time-based technique is 
not required to be quasi-stationary. 

Some limitations should be mentioned in this study. Currently, the 

performance is only evaluated on the Fantasia database, which is clean 
and recorded under a static environment. The performances of EDR 
methods on the noisy and dynamic data need to be evaluated in future 
work. Another limitation is that BR calculation is based on basic peak 
detection. The accuracy is affected by the detected peaks. Therefore, a 
more automatic and accurate BR detector is necessary. In addition, 
although these EDR methods perform well in a static environment, more 
efforts should be devoted to developing new methods to extract respi
ration waveform from ECG accurately in a dynamic environment. 

In this study, the performance of 10 feature-based ECG-derived 
respiration methods was quantified, based on three aspects: sampling 
rate, SNR and window length, by waveform correlation and breathing 
rate calculation. The results showed that the AMQR could be applied to 
occasions with high accuracy requirements, and FMRR performed better 
in stability applications. In conclusion, these findings were meaningful 
for providing references for algorithm selection based on different 
requirements. 
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