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ABSTRACT Congestive heart failure (CHF) is a serious pathophysiological condition with high morbidity
and mortality, which is hard to predict and diagnose in early age. Artificial intelligence and deep learning
combining with cardiac rhythms and physiological time series provide a potential to help in solving it.
In this paper, we proposed a novel method that combines a convolutional neural network (CNN) and a
distance distribution matrix (DDM) in entropy calculation to classify CHF patients from normal subjects,
and demonstrated the effectiveness of this combination. Specifically, three entropy methods were used to
generate the distribution matrixes from a 300-point RR interval (i.e., the time interval between the successive
cardiac cycles) time series, which are Sample entropy, fuzzy local measure entropy, and fuzzy global measure
entropy. Then, three high representative CNN models, i.e., AlexNet, DenseNet, and SE_Inception_v4 were
chosen to learn the pattern of the data distributions hidden in the generated distribution matrixes. All data
used in our experiments were gathered from theMIT-BIHRR Interval Databases (http://www.physionet.org).
A total of 29 CHF patients and 54 normal sinus rhythm subjects were included in this paper. The results
showed that the combination of FuzzyGMEn-generated DDM and Inception_v4 model yielded the highest
accuracy of 81.85% out of all proposed combinations.

INDEX TERMS Congestive heart failure (CHF), convolutional neural network (CNN), distance distribution
matrix (DDM), heart rate variability (HRV), entropy.

I. INTRODUCTION
Congestive heart failure (CHF) is a serious pathophysiolog-
ical condition, which has become a common cause of hos-
pitalization with significant morbidity and mortality [1]–[4].
However, heart failure remains insufficiently diagnosed
worldwide, especially in early age [5]–[8]. Precise diagno-
sis is thus vital for heart failure treatment. Previous studies
showed that heart rate variability (HRV), which is associated

with the mortality of CHF, is an effective feature for discrimi-
nating CHF patients from normal subjects [9]–[11]. Over the
past years, various machine learning methods were proposed
to diagnose patients suffering from CHF based on HRV. For
example, Isler and Kuntalp [12] proposed a model based
on k-nearest neighbor classifier (KNN) and wavelet entropy.
Jovic and Bogunovic [13] utilized random forest and
combinations of linear and nonlinear features of HRV.
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La Rovere et al. [11] designed a classifier based on regression
tree with selected RMSSD, total power, HF, and LF/HF as
useful classification features. There are also researchers who
employed SVM and combinations of several HRV features
and achieved relatively high accuracies [14]–[16].

Most existing works employ classifiers with comparatively
simple structures and trained on small data sets. The input
of their classifiers is empirically a set of selected features.
However, the performance of the classifiers is largely based
on feature selection processes [12], [14]. Thus in most cases,
a large amount of time and effort is paid to manually find
better feature subsets and even adopted the so-called exhaus-
tive search methods to find the best subsets of features [17].
Additionally, the choice of the best feature combination may
change with different datasets. With the explosion of data and
the development of smart wearable devices, deep learning
is a desirable way to overcome the shortage of artificial
feature extraction and selection. Deep neural networks are
designed to automatically learn the underlying hidden fea-
ture combinations without any manual process. As one type
of the most successful deep neural network, convolutional
neural network (CNN) has gained significant development
and achieves state-of-the-art results on various tasks [11].
CNNs are able to accept raw and complete images as inputs,
so as to avoid the risk of losing valuable information. Thus,
we decide to employ different CNNs to automatically learn
effective features from HRV data and produce accurate
classification results without complicating manual feature
extraction.

Entropy is a non-linear HRV analysis method, which
provided a better understanding for the underlying mech-
anisms of the cardiovascular system [18]–[20]. In previ-
ous study, entropy calculation was able to distinguish CHF
and normal sinus rhythm (NSR) subjects with appropriate
parameters. A statistical significance for the two groups was
obtained [21], [22]. Jovic and Bogunovic [13] tried to use
combinations of entropy calculation results as the input of
classifiers and acquired a moderate result of approximate
73% accuracy . It could be attributed to the simple and rough
entropy calculation, i.e. there will be only a number value
result, leading to a potential risk to lose useful information
for subsequent normal/abnormal classification.

The construction of distance distribution matrix (DDM)
is an essential step for entropy calculation. The difference
between normal and abnormal cardiac conditions can be
depicted and observed by DDM. This is thus a desirable
input for CNN as it reveals the features of HRV signals in
the manner of entropy analysis but contains richer infor-
mation than a simple single entropy value calculation. The
RR interval is the time interval between the successive cardiac
cycles and regarded as an important feature of an ECG signal.
It is usually quantified by the time difference between the
occurrence of the maximum wave, i.e. the R wave of a
cardiogram. Thus RR interval time series in the long-term
RR Interval Databases from http://www.physionet.org [23]
are used in this study to generate the DDMs.

In this study, our main aim is to use the DDM as an
image feature to achieve classification between the NSR and
CHF subjects by employing these improved representative
CNNmethods. Several stages were included in this study. The
first stage is to convert RR interval time series into DDMs
using three kinds of entropy methods: i.e. Sample entropy
(SampEn), fuzzy local measure entropy (FuzzyLMEn) and
fuzzy global measure entropy (FuzzyGMEn). The second
stage is to train classifiers based on three different types of
CNN models. Experimental study is presented in the last
stage, which evaluates our models on two schemes. Our
contributions are summarized as follows:

1) We improve three different types of classifiers without
manual feature extraction based on latest state-of-art
CNN models.

2) We generate three kinds of DDMs from RR interval
time series as the input of these classifiers and compare
their classification results based on the three CNN clas-
sifiers. All three kinds of DDMs show discriminability
for the RR interval time series between NSR and CHF
groups, and the performance of each model has no
significant difference. This verifies the effectiveness of
combination of DDM and the CNN model.

3) We choose the subject-based and segment-based
schemes as the evaluation schemes and compared their
performances. In this study, the segment-based scheme
performs similarly to the subject-based scheme.

II. CNN MODELS
AlexNet [24], DenseNet [25] and Inception_v4 [26] were
used in this study. AlexNet is one of the largest CNNs
trained on the subsets of ImageNet used in the ILSVRC-2010
and ILSVRC-2012 competitions. DenseNet alleviates the dis-
appearance of gradients and enhances feature propagation
by encouraging feature reuse, and this greatly reduces the
amounts of parameters. Inception_v4 was one of several
follow-up versions to GoogLeNet [27], and is the winner of
ILSVRC 2014, but became deeper and wider by introducing
residual connections and has a more simplified architecture
and more inception modules than the previous versions [26].
All these models are representative CNN models. The details
of the three employed CNNs as described as follows:

A. ALEXNET
Original AlexNet contains five convolutional and three
fully-connected ones. In our study, we converted those fully-
connected layers into convolutional layers. This made it pos-
sible to efficiently run the CNN on 297 × 297 input images.
The architecture was summarized in Fig. 1. Firstly, we use a
convolution with 64 output channels and kernel size 11× 11
to input distribution matrix followed by a 3× 3 max pooling
layer. After several convolution and max pooling operations,
dropout layers were also used to enhance the robustness of the
model. At the end of the network, the global average pooling
layer is performed. Besides, rectified linear units (ReLUs)
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FIGURE 1. The architecture of AlexNet.

were used to reduce training time and local normalization
scheme was used to aid generalization.

B. DENSENET
DenseNet consists of alternating transition layers and dense
blocks. Fig. 2 illustrates the architecture of the DenseNet.
Firstly, we use a convolution with 48 output channels fol-
lowed by a transition layer. Each transition layer is to change
the size of feature maps by convolution and pooling between
dense blocks, which consists of a batch normalization layer,
a ReLU layer and a 1× 1 convolutional layer with 24 output
channels followed by a 2 × 2 average pooling layer. In a
dense block, each layer obtained additional inputs from all
its preceding layers and passes on its own feature maps to all
its subsequent layers. The network is divided into multiple
densely connected dense blocks.At the end of the DenseNet,
a global average pooling is used and then a softmax classifier
is performed.

C. INCEPTION-V4
The main contribution of Inception_v4 was the Inception
Module that dramatically reduced the number of parameters
in the network. Additionally, it used average pooling instead
of fully connected layers at the top of the ConvNet, elim-
inating a large number of parameters without remarkably
decrease of performance. In our study, we add ‘‘Squeeze-
and-Excitation’’ (SE) block in each inception block to model
channel-wise relationships in a computationally efficient
manner. It enhance the representational power of modules

FIGURE 2. The architecture of DenseNet.

FIGURE 3. The whole architecture of SE_Inception_v4 and the ‘‘stem’’
module in SE_Inception_v4.

throughout the network. Consequently, we term our model
as SE_Inception_v4. The overview of SE_Inception_v4 is
illustrated in the left side of Fig. 3. It is composed of
‘‘stem’’, ‘‘inception’’ and ‘‘reduction’’ modules, as shown in
Fig. 3 and Fig. 4 in detail.

III. EXPERIMENT
A. DATA
All data used in our experiments were gathered from the long-
term RR Interval Databases (http://www.physionet.org) [23],
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FIGURE 4. ‘‘Inception’’ and ‘‘Squeeze-and-Excitation’’ modules in
SE_Inception_v4.

a free-access, on-line archive of physiological signals. The
NSR RR Interval Database was used as the non-pathological
and control group data. This database included 54 long-
term RR interval recordings of subjects in normal sinus
rhythm aged from 29 to 76. The CHF RR Interval Database
was used as the pathological group data. This database
included 29 long-term RR interval recordings of sub-
jects aged from 34 to 79, with congestive heart failure
(NYHA classes I, II, and III). The original ECG signals for
both NSR and CHF RR interval databases were resampled at
128 Hz, and the beat annotations were obtained by automated
analysis with manual review and correction.

B. PRE-PROCESS
RR interval is one of the important features of the ECG signal.
It is the time interval between the successive cardiac cycles,
which is usually quantified by the time difference between
the occurrence of the maximum wave, R, of a cardiogram
and is often called RR interval. In this section, two steps
were used in the pre-process procedure for each RR interval
recording:
Step 1: Each beat in the raw ECG signals was annotated as

a normal or abnormal heartbeat. These abnormal heartbeats,
usually caused by the ectopic beats such as supra-ventricular
ectopic beats or ventricular ectopic beats (depending on
the localization of the ectopic focus), were removed from
the raw ECG signals, as the RR intervals formed from the
abnormal heartbeats could confound the entropy analysis of
HRV. We also remove RR intervals greater than 2 seconds
to ignore the influence from the artifacts. Table 1 shows
the total number of RR intervals for both NSR and CHF
groups, as well as the numbers of RR intervals after the above
procedure.
Step 2: Then we divide these ECG signals into several

RR segments. The length of each RR segment is recorded
as N, and we set N = 300, i.e. each RR segment contains
300 RR intervals.

TABLE 1. Statistical results of the numbers of RR interval recordings,
RR intervals and RR segments from the 54 NSR and
29 CHF RR Interval Databases.

C. GENERATION OF DDM
SampEn [28], proposed by Lake et al. [29], can be used
to analyze physiological time series. SampEn quantifies the
conditional probability that two sequences ofm length similar
consecutive data points will still be similar for m+1 (given
a tolerance r). DDM generation is an intermediate step for
SampEn calculation. DDM consists of similarity degrees
which are determined by the distance and a decision rule. The
distance is defined as follows:

For the HRV series x (i) , 1 ≤i ≤ N , given the
parameters m, form N − m+ 1 vectors

Xmi ={x (i) , x (i+1) , · · · , x (i+m−1)} 1≤ i≤N−m

(1)

The distance between any two vectors Xmi and Xmj based
on the maximum absolute difference is defined as:

dmi,j = d
[
Xmi ,X

m
j

]
=

m−1
max
k=0
|x (i+ k)− x (j+ k)| (2)

where m denotes the embedding dimension.
The decision rule for vector similarity is based on the

Heaviside function in SampEn. If the distance is within the
threshold parameter r, the similarity degree between the two
vectors is 1; if the distance is beyond the threshold param-
eter r, the similarity degree is 0. This rigid boundary may
induce abrupt changes of entropy values when the toler-
ance threshold r changes slightly, and even fail to define
the entropy if no vector-matching could be found [30]–[32].
To enhance the statistical stability, a fuzzy measure entropy
(FuzzyMEn) method was proposed [31], [33], which used
a fuzzy membership function to substitute the Heaviside
function.

Unlike the 0 or 1 discrete determination for vector simi-
larity degree in SampEn, fuzzy membership function permits
the FuzzyMEn outputs continuous numerical values between
0 and 1 for the degree of vector similarity. Since FuzzyMEn
not only measures the global vector similarity degree, but
also refers to the local vector similarity degree. Thus, in
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FIGURE 5. ‘‘Reduction’’ module in SE_Inception_v4.

this study we define FuzzyLMEn as the FuzzyMEn that
is measured by local vector similarity degree. We also use
FuzzyGMEn to denote the FuzzyMEn that is measured by
global vector similarity degree. The detailed descriptions of
SampEn, FuzzyLMEn and FuzzyGMEn were summarized in
the Appendix.

Three types of DDMs are generated firstly at the setting
of different embedding dimension m and m + 1. Then we
calculated the difference of these twoDDMs. In the following
classification process, the differences of DDMs were used
as the input images of the CNN classifiers. Figures 6-8
show the DDMs generated by SampEn, FuzzyGMEn and
FuzzyLMEn.We set embedding dimensionm as 2 and 3 com-
bined with threshold r = 0.1 and segment length N = 300,
which has been proved statistical significance for SampEn,

FIGURE 6. (A) DDM generated by SampEn for NSR subject under different
parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference of (A1)
and (A2); (B) DDM generated by SampEn for CHF patient under different
parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference
of (B1) and (B2).

FIGURE 7. (A) DDM generated by FuzzyGMEn for NSR subject under
different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference
of (A1) and (A2); (B) DDM generated by FuzzyGMEn for CHF patient under
different parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference
of (B1) and (B2).

FIGURE 8. (A) DDM generated by FuzzyLMEn for NSR subject under
different parameter settings: (A1) m = 2, (A2) m = 3, (A3) the difference
of (A1) and (A2); (B) DDM generated by FuzzyLMEn for CHF patient under
different parameter settings: (B1) m = 2, (B2) m = 3, (B3) the difference
of (B1) and (B2).

FuzzyGMEn and FuzzyLMEn [21]. Only 1 ≤ i ≤ 297 and
1 ≤ j ≤ 297 are shown for illustrating the details. In each sub-
figure, the upper panel shows the results from a NSR subject,
and the lower panel shows the results from a CHF subject.
The results are from the embedding dimensionm = 2, and
m = 3 respectively. Their difference is showed from left
to right respectively and are used as the input images of
the CNN classifiers in the following classification process.
Black colored areas indicate the similarity degree = 1 and
vice versa.

Figure 6 presents the DDMs generated by SampEn.
Figures 7-8 present the DDMs generated by FuzzyGMEn and
FuzzyLMEn respectively. Unlike the 0 or 1 discrete determi-
nation for vector similarity degree in SampEn, FuzzyGMEn
and FuzzyLMEn permit the outputs of continuous real values
between 0 and 1 for the vector similarity degree, by convert-
ing the absolute distance of using a fuzzy exponential func-
tion (see Appendix). Dark-colored areas indicate the higher
similarity degree and vice versa.
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D. MODEL CONFIGURATION
The details of AlexNet, DenseNet and SE_Inception_v4 are
illustrated in Fig. 1, Fig. 2 and Fig. 3 respectively. All
three models were implemented with Tensorflow library [34].
We trained the networks from scratchwith aGaussian random
initializer (µ = 0, σ = 0.01). The Adam optimizer with
an initial learning rate of 0.0001 was used for parameters
updating. The dropout was set to 0.5 to avoid overfitting.

E. EVALUATION SCHEME
In this study two schemes are considered for the selection
of training and test sets. The first selecting scheme is based
on subject (recording). We randomly select subjects into five
folds. Four folds for training, and the remaining one is for
testing. Table 2 shows the results of selecting.

TABLE 2. Fold results for all records in the two groups.

Besides subject-based selecting scheme, we also consider
segment-based scheme. To evaluate the robustness of the pro-
posed models, 5-fold cross-validation strategy is employed.
Firstly, the first 10% data of each subject are used to train
and the other 90% of data are used to test without any overlap.
Then the percent of train data increases by 10% and repeats
until the first 90% data of each subject are used to train and
the last 10% are used to test.

F. PERFORMANCE MEASURES
We evaluate ourmodel performance by combining True/False
Positives/Negatives to measure Precision, Recall and Accu-
racy (Acc.) [35]. They are often considered to be the most
informative for characterizing the performance of a classifier
and easy to calculate. Accuracy (Acc.) is the ratio of the
total number of positives and negatives correctly made by
the recognition system to the actual total number of positives
and negatives confirmed by the recognition system. Precision
measures the rate of true positives among all detections,
while Recall measures the percentage of detected ground
truth annotations. They are defined by:

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

,

Acc. =
TP+ TN

TP+ TN+ FP+ FN
(3)

where true positives (TP) denotes the number of CHF seg-
ments correctly classified as CHF group. False positives (FP)
refer to the number of NSR segments incorrectly classified as

CHF group. True negatives (TN) associate with the number of
NSR segments correctly classified as NSR group. False neg-
atives (FN) refer to the number of CHF segments incorrectly
classified as NSR group.

IV. RESULTS
A. SUBJECT-BASED SCHEME
For the subject-based selecting scheme, Tables 3-5 present
the 5-fold cross-validated Precision, Recall, and Mean
Acc. under subject-based selecting scheme, resulting from
each 3 classifiers (AlexNet, DenseNet, SE_Inception_v4)
trained by DDMs generated from SampEn, FuzzyGMEn and
FuzzyLMEn respectively. The method that reports the best
score is SE_Inception_v4 trained by FuzzyGMEn-generated
DDMs, resulting in Acc. = 81.85% and Std. = 2.97%.

B. SEGMENT-BASED SCHEME
Tables 6-8 present the results under segment-based select-
ing scheme. The method that reports the best score
is SE_Inception_v4, which trained by global type data,

TABLE 3. The performance summary using SampEn-generated DDMs
based on subject-based scheme.

TABLE 4. The performance summary using FuzzyGMEn-generated DDMs
based on subject-based scheme.
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TABLE 5. The performance summary by FuzzyLMEn-generated DDMs
based on subject-based scheme.

TABLE 6. The performance summary using SampEn-generated DDMs
based on segment-based scheme.

resulting in Mean Acc. = 80.94% and Std. = 1.71%. Mean
accuracies of all 3 trained models score between 78.05% and
80.94%, except for the lowest score of 76.82% generated
by SampEn-generated DDMs. It is also shown that the per-
formance for these three models increase greatly when the
percent of data to train varies from 10% to 90%.

It is clear that inception-v4 performs the best with the
highest mean accuracy for each of the 3 methods and both
selecting schemes. It can also be seen that FuzzyGMEn-
generated matrixes tend to show a more profound feature

TABLE 7. The performance summary using FuzzyGMEn-generated DDMs
based on segment-based scheme.

vector for distinguishing CHF and NSR subjects, which are
classified with a higher accuracy compared with those of
FuzzyLMEn-generated DDMs in Tables 5, 8 and SampEn-
generated DDMs in Tables 3, 6, respectively.

V. DISCUSSION
In this study, we choose three CNNmodels for classifying the
NSR and CHF patients, and compared their performances.
The result shows that no matter what models we choose,
the performances of three model have no significant differ-
ence. This means the result is not an accidental phenomenon
based on one model. We also choose two different schemes
to train models. Under the subject-based scheme, training
and test data are totally independent. Under segment-based
scheme, a certain fraction of each subject’s segments is ran-
domly selected as the training set and the remaining are used
as the test set. Previous study has proved models trained by
dependent data performedmuch better thanmodels trained by
independent data [28]. However, in this study, the results from
the segment-based scheme are similar to the results from the
subject-based scheme. This is due to the large intra-subject
variability of DDMs.

Over the past years, automatic classifiers have been
proposed in diagnosing patients who are suffering CHF.
Isler et al. proposed a model based on KNN and wavelet
entropy measures of HRV indices [12]. When they used all
features to train models, their accuracy is between 78.31%
and 84.34%. However, after they used genetic algorithm
(GA) for feature selection, they obtained an accuracy as high
as 96.39%. However, the method is too complicated for the
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TABLE 8. The performance summary using FuzzyLMEn-generated DDMs
based on segment-based scheme.

daily monitoring. A classifier based on classification and
regression tree (CART) was proposed by Pecchia et al. [17]
to distinguish CHF patients from NSR subjects. This method
is simpler and can be fully understood without advanced
mathematical skills. They evaluate the result of CART to
choose feature and discriminate CHF patients. It is worth
mentioning that they use ‘‘tree A’’ to classify segments and
then use ‘‘tree B’’ to classify subjects. Therefore, their final
result is to evaluate the performance of classifying subjects.

The difference between our study and other studies is that,
we trained the model for CHF segments classification, not
for CHF patients classification. In this way, our performance
result cannot be compared with their result because we are
measuring different things. This research also allowed us a
further research direction: seek for the proper ratio of abnor-
mal segments for CHF diagnosis. Jovic and Kuntalp [13]
proposed a model based on random forest and combina-
tions of linear and nonlinear features of HRV. They achieved
an accuracy of 73% when they only used combinations of
entropy calculation result as the input of the classifier. This
result can be improved to around 84% by using combinations
of linear and non-linear HRV features. This unpromising
result by simply using the combinations of entropy calcula-
tion can also prove that DDM contains more information than
simple entropy calculation. There are also researchers who
designed classifiers based on SVM method and combination
of several HRV features and reached high accuracy [14]–[16].
Liu et al. [15] and Wang et al. [14] compared the

contributions of different combinations of HRV features to
performance of classifiers. Liu et al. reached a highest accu-
racy of 91.49% using combination of time domain and non-
linear features, which is consistent with the conclusion of
Jovic and Bogunovic [13].

All these studies are using multiple features as the input
of classifiers, for the reason that the performance with
single feature is far poorer. Jovic and Bogunovic [13]
achieved results between 60% and 75% which are far lower
than other results by using combination of the same type
of features, such as approximate entropy (ApEn1-ApEn4),
maximum approximate entropy (MaxApEn), multiscale sam-
ple entropy (SampEn1-SampEn20), multiscale carnap 1D
entropy(Carnap1-Carnap20). The above features all belong
to the entropy method category but their calculation methods
are different. The result of previous studies depends on which
feature set is chosen. However, this best choice may change
when choosing different datasets. Additionally, it is also too
complex and demanding for the daily activity of clinicians.

VI. CONCLUSION
In our study, we only used one feature to train models and
obtained the highest accuracy of 81.85%. This result is much
higher compared to the result of using combination of the
same type of features. However, it is much lower than the
previous studies which are using combinations of different
features. For the next step, we plan to add other dimension
images to improve the completeness of input and we expect
the result will be improved. Single dimension of input is still
too ‘thin or lean’ for a model to train, which can be seen
in the current result. Adding more dimension images does
not mean we will increase steps of feature selection, since
it is CNN itself that extract features. We can also train the
CNN classifier using larger dataset, for the reason that small
datasets will cause the deep neural network to overfit.

APPENDIX
A. SAMPLE ENTROPY METHOD (SAMPEN)
For RR segment x(i) (1 ≤ i ≤ N ), form the vector
sequences Xmi :

Xmi = {x (i) , x (i+ 1) , . . . , x (i+ m− 1)} ,

1 ≤ i ≤ N − m+ 1

Then the distance between Xmi and Xmj based on the maxi-
mum absolute difference is defined as:

dmi,j = d
[
Xmi ,X

m
j

]
=

m−1
max
k=0
|x (i+ k)− x (j+ k)|

In SampEn, if the distance is within the threshold parame-
ter r= 0.2, the similarity degree between the two vectors is 1;
if the distance is beyond the threshold parameter r , the simi-
larity degree is 0. There is absolutely a 0 or 1 determination.

B. FUZZY MEASURE ENTROPY (FUZZYMEN)
For RR segment x(i) (1 ≤ i ≤ N ), firstly form the local
vector sequences XLmi and global vector sequences XGmi
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respectively:

XLmi = {x (i) , x (i+ 1) , · · · , x (i+ m− 1)} − x̄(i)

XGmi = {x (i) , x (i+ 1) , · · · , x (i+ m− 1)} − x̄

1 ≤ i ≤ N − m

The vector XLmi represents m consecutive x(i) values but
removing the local baseline x̄(i), which is defined as:

x̄(i) =
1
m

m−1∑
k=0

x(i+ k) 1 ≤ i ≤ N − m

The vector XGmi also represents m consecutive x(i) values
but removing the global mean value x̄ of the segment x(i),
which is defined as:

x̄ =
1
N

N∑
i=1

x(i)

Then the distance between the local vector sequences
XLmi and XLmj and the distance between the global vector
sequences XGmi and XGmj are defined as follows respectively:

dLmi,j = d
[
XLmi ,XL

m
j

]
=

m−1
max
k=0
|(x (i+ k)− x̄(i))− (x (j+ k)− x̄(j))|

dGmi,j = d
[
XGmi ,XG

m
j

]
=

m−1
max
k=0
|(x (i+ k)− x̄)− (x (j+ k)− x̄)|

Given the parameters nL, rL, nG and rG, calculate the
similarity degreeDLmi,j(nL , rL) between the local vectors XL

m
i

and XLmj by the fuzzy function µL(dLmi,j, nL , rL), as well
as calculate the similarity degree DGmi,j(nG, rG) between
the global vectors XGmi and XGmj by the fuzzy function
µG(dGmi,j, nG, rG):

DLmi,j(nL , rL) = µL(dL
m
i,j, nL , rL) = exp(−

(dLmi,j)
nL

rL
)

DGmi,j(nG, rG) = µG(dG
m
i,j, nG, rG) = exp(−

(dGmi,j)
nG

rG
)

In this study, the local similarity weight nL = 1 and global
vector similarity weight nG = 2, the local tolerance threshold
rL was set equal to the global threshold rG, i.e., rL = rG = r .
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