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ABSTRACT With the fast development of wearable electrocardiogram (ECG) monitoring, real-time
and dynamic signal quality assessment (SQA) become an imperious demand. Thus, many signal quality
indices (SQIs) have been developed in the past several years. bSQI is a typical SQI defined from two common
QRS complex detectors (‘ep_limited’ and ‘wqrs’). However, in actual application, bSQI heavily relies on the
QRS complex detectors used. Therefore, if using different combination of QRS detectors can improve the
performance of SQAneeds to be explored. In this paper, we utilized up to tenQRS detectors to re-define bSQI
from the combination of any two QRS detectors to test which combination outputs the highest performance.
Then, we generalized the two QRS detector-based bSQI to multiple QRS detector-based bSQI (i.e., GbSQI),
to systematically test the effects of type and number of QRS detectors on SQA performances. The results
showed that for the single GbSQI feature-based classifier, the combination of six QRS detectors reported
the highest classification accuracy with a mAcc of 94.03%. For the multiple GbSQI feature-based classifier,
the combination of four QRS detectors showed the best classification accuracy with a mAcc of 94.76%.
As a conclusion, we recommended using U3, UNSW, DOM, and OKB detectors for calculating GbSQI for
the wearable ECG monitoring application.

INDEX TERMS Electrocardiogram (ECG), signal quality assessment (SQA), signal quality index (SQI),
QRS detection.

I. INTRODUCTION
Recently, the fast-developing wearable and Internet of
things (IoT) technologies significantly promote the progress
in ambulatory electrocardiogram (ECG) monitoring [1],
which is an essential useful tool for the early detection
of cardiovascular diseases (CVDs) [2]. However, dynamic
ECGs suffer from the problem of poor signal quality due to
the bad electrode contact or incorrect electrode positioning
due to unsupervised operators in a remote condition [3].
Poor signal quality impedes the reliable manual or auto-
mated measurement, hazards the correct diagnosis informa-
tion [4], increases the risk of false alerts [5], and increases

the workload of physicians [6], which may limit the mHealth
application for rural populations [4]. Therefore, automated
signal quality assessment (SQA) method is important to be
established, and can remind the user to re-take recordings
when signal quality is low [7], to reject the unavailable
ECGs to avoid the network congestion [8], and to provide
the reliable signals for CVDs scanning [9].

A variety of SQA methods have been explored, including
time-domain, frequency-domain, joint time-frequency, self-
correlation, cross-correlation, entropy methods, etc. In 1989,
Moody and Mark developed a Karhunen–Loeve transform
to estimate ECG noise [10]. In 1996, Allen and Murray
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proposed quantitative indexes, i.e., the frequency content in
six different bandwidths and the time length exceeded a
preset threshold [6]. In 2008, Redmond et al. [11] devel-
oped a signal artifact masking algorithm for automatically
marking ECGs with sections of obvious artifact, including
three feature masks: a rail contact mask, a high-frequency
mask and a low power mask, which was the first report
about the ECG quality measures in unsupervised telecare
environments. Based on this signal artifact masking algo-
rithm, Redmond et al. [12] proposed a SQA method using
a Parzen window supervised statistical classifier model
in 2012. In 2008, Li et al. [13] proposed four signal quality
indexes: (1) bSQI: comparison of two beat detectors on a
single ECG lead, (2) iSQI: comparison of the same beat
detector on different ECG leads, (2) kSQI: evaluation of
the kurtosis (randomness) of ECG episode, and (3) sSQI:
calculating the spectral distribution of ECG episode within
a certain physiological frequency band. Using these indexes,
Clifford et al. [14] achieved good results in the 2011 Phys-
ioNet/CinC challenge. The 2011 Physionet/CinC Challenge
addressed the issue of developing an efficient algorithm
being able to run in real-time on a mobile phone, which
can provide useful feedback to a layperson in the process of
acquiring a diagnostically useful ECG recording [8]. Since
then, many SQA methods have been proposed [2], including
six wave features (flat baseline, saturation, baseline drift,
low amplitude, high amplitude and steep slope) identified
by Marco et al. [15], and a signal quality matrix used by
Xia et al. [9]. In addition, recently Zhang et al. [16] devel-
oped a novel encoding Lempel–Ziv complexity algorithm for
quantifying the irregularity of ECGs.

The developed signal quality indexes (SQIs) fall into two
categories. The first category of SQIs were directly calculated
from ECG waveform characteristics, such as signal ampli-
tude, spectrum, standard deviation, mean square error and
signal noise ratio (SNR). The second category of SQIs were
calculated by analyzing the feature characteristics extracted
from ECGs. bSQI was a typical representative. It was based
on the principle that QRS detections from different algo-
rithms should be nearly the same for good quality signals,
while they should be different if signal quality was poor.
Since different QRS detectors were sensitive and specific
to different types of noises [17], the comparison of how
accurately multiple QRS detectors isolate each event (such
as a beat or a noise artifact) provides an estimation of noise
level. bSQI has been widely used in several years, as the
essential SQI feature for single/multiple channel ECGs signal
quality determination [18] or as feature for support vector
machine (SVM)-based ECG SQA [19].

However, it is clear that bSQI heavily relies on the used
QRS detectors. bSQI itself uses two common QRS detectors:
‘ep-limited’ [20] and ‘wqrs’ [21]. If one QRS detector
misses one or more beats (due to lowQRS amplitudes) or reg-
isters extra beats (due to artifact or high amplitude T waves),
bSQI will fail to give a good signal quality estimation [13].
Accordingly, how robust will the widely used bSQI be on

the poor signal quality ECGs? If using other QRS detec-
tors, or combining multiple QRS detectors, will improve the
performance of bSQI? These questions should be clarified.
Thus, in this study, the contributions are from two aspects.
First, we utilized up to ten QRS detectors to re-calculate
bSQI from the combination of any two and obtained the
best combination of QRS detectors for defining two QRS
detector-based bSQI. Then, we generalized the two QRS
detector-based bSQI to multiple QRS detector-based bSQI
(i.e., GbSQI), to compare the effects of the type and number
of QRS detectors on the SQA performances of GbSQI.

II. METHOD
A. DATABASE AND RE-LABELLING
A total of 1,000 recordings of standard 12-lead ECGs from
the 2011 PhysioNet/CinC Challenge were used [8], which
were collected by the Sana Project [22] and were provided
freely via PhysioNet [23]. ECGs were sampled at 500 Hz
with 16-bit resolution and were filtered with full diagnostic
bandwidth (0.05 through 100 Hz). Each signal had a length
of 10 s. In 1000 ECGs, 773 were labeled as ‘acceptable,’
225 were ‘unacceptable’ and 2were ‘intermediate’. However,
the labeling for ‘acceptable’ or ‘unacceptable’ was for the
whole 12 channels, not for the single channel, making the
evaluation of bSQI on single ECG channel impossible. For
example, many ‘acceptable’ ECGs have a channel with total
noises or being even a flat line. Thus, we re-labeled each
channel of ECGs and obtained a total of 12,000 10-s ECG
data segments.

TABLE 1. Five signal quality levels for the 10-s ECG segments.

According to the literatures [7], [8], we used five signal
quality levels and scored each ECG segment as Table 1. Typi-
cal examples in each signal quality level were shown in Fig.1.
Five researchers re-labeled all the ECG recordings. For each
10-s ECG segment, five scores were obtained. Then the 10-s

ECG segment was labeled as ‘acceptable’ if S̄(S̄ = 1
5

5∑
i=1

Si)

was higher than a threshold of 0.25. Otherwise, it was labeled
as ‘unacceptable,’ resulting in a total of 9,941 acceptable and
a total of 2,059 unacceptable 10-s ECG segments.
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FIGURE 1. Typical 10-s ECG segments from each signal quality level. ECG
segment from Level 1 is relatively clean, and those from Levels 2-5 have
the decreased signal quality.

B. ORIGINAL bSQI
The original bSQI proposed by Li et al. [13] was based
on the comparison of two beat detectors on a single lead.
Two well documented open-source QRS detectors were
used: ‘ep_limited’ was based on digital filtering and integra-
tion [24] and ‘wqrs’ was based on a length transform after
filtering [21]. bSQI for a w seconds signal was defined to
be the ratio of beats detected synchronously (within an inter-
val, γ ) by both detectors to all the detected beats (by either
detector) within the window [25]. w is set to be 10 s and γ is
set to be 150 ms. bSQI for the kth beat was defined as:

bSQI (k)

=
N_matched(k,w)

N_ep_limited(k,w)+N_wqrs(k,w)−N_Matched(k,w)
(1)

where, N_matched(k,w) is the beat number agreed upon
(within γ = 150 ms), N_ep_limited(k,w) is the beat number
detected by ‘ep_limited’ andN_wqrs(k,w) is the beat number
detected by ‘wqrs’. Therefore, bSQI ranges between 0 and 1
inclusively. For N beats, there are N windows set to be
w = 10 s long, centered ± 5 s around the kth beat. In this
study, the signal from the 2011 PhysioNet/CinC Challenge
had a length of 10 s merely, so there was only one window for
each signal. In this way, only one bSQI value was calculated
for each signal.

C. GENERALIZED bSQI (GbSQI)
Thanks to the quick development for studies on QRS detector
in the past several decades. A large number of QRS detectors

TABLE 2. The QRS detectors with low computational complexity used in
this study.

have been developed and have been open-sourced. In this
study, we tested up to ten QRS detectors, which detailed
in Table 2.

There are a large number of QRS detectors have been
proposed in the past several years. To analyze all of them
would be impractical. Dynamic ECG signal mainly came
from wearable or mobile devices. These devices, with the
limitations in terms of memory and processor capability,
have very high requirements for computational efficiency.
So computational efficiency becomes the first criterion for
QRS detectors selection. Besides, the high accuracy is an
essential basis for the QRS detectors. In fact, the current
detectors have high accurate for the ECG signal with high
signal quality, butmost do not have good performances for the
low-quality signals. As is known to all, it is not always towrite
the right program according to the description of some papers.
So, the performability was also a key point for QRS detec-
tors selecting. Therefore, according to these three criteria
(algorithm efficiency, detection accuracy and performability),
this study selected ten QRS detectors from dozens of papers.
Of course, there are many other good detection algorithms
with low computation complexity, high detection accuracy
and good operability. Because of the limited time and our
viewpoints, only these ten QRS detection algorithms were
selected in this study.

The generalized bSQI (GbSQI) for the kth beat within
a w seconds signal window is defined as (2), as shown at
the bottom of this page, where, a total of n QRS detectors
were used for calculating GbSQI, and N_matched(k,w) is
the beat number that all algorithms agreed upon (within
γ = 150 ms), N_methodn(k,w) is the beat number detected
by the nth method. GbSQI therefore also ranges between
0 and 1 inclusively. For N beats, there are N windows set to
be w = 10 s long, centered ± 5 s around the kth beat. In this
study, the signal from the 2011 PhysioNet/CinC Challenge

GbSQI (k,w) =
(n− 1)× N_matched(k,w)

N_Method1(k,w)+ N_method2(k,w)+ · · ·N_methodn(k,w)− N_matched(k,w)
(2)
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had a length of 10 s merely, so there was only one window for
each signal. In this way, only one GbSQI value was calculated
for each signal.

In this study, seven patterns of GbSQI (bSQI-2, bSQI-3,
bSQI-4, bSQI-5, bSQI-6, bSQI-7, bSQI-8) were tested
(see Table 3). Take bSQI-2 as an example, any two QRS
detectors were chosen randomly from the ten algorithms, and
45 combinations were generated.

TABLE 3. Seven patterns of GBSQI.

D. EVALUATION METHODS
Sensitivity (Se), specificity (Sp) and modified accu-
racy (mAcc) were defined in (3-5), based on the num-
ber of signals correctly classified as ‘unacceptable’ (TP),
the number of signals falsely classified as ‘unaccept-
able’ (FP), the number of signals correctly classified as
‘acceptable’ (TN) and the number of signals falsely classified
as ‘acceptable’ (FN) [34].

Se =
TP

TP+ FN
× 100% (2)

Sp =
TN

TN+ FP
× 100% (3)

mAcc =
Se+ Sp

2
× 100% (4)

We tested the performances from both single GbSQI
feature-based classifier and multiple GbSQI feature-based
classifier. For single GbSQI feature-based classifier, for each
GbSQI feature, the threshold was firstly optimized and then
was used for classifying. For multiple GbSQI feature-based
classifier, the selected (sorted based on the performance of
single GbSQI feature) features were input to an SVM classier
for training a classification model. The Gaussian kernel was
used in SVM. C and γ were optimized using a grid search
method with the search range over C (from 0.5 to 724) and
γ (from 4 to 32). For each test, a 10-fold cross validation
was used. Figure 2 demonstrates the evaluation process for
bSQI-2 pattern.

III. RESULTS
Figure 3 shows the total classification performances (mAcc,
Se, Sp) for both single GbSQI feature-based classifiers and
multiple GbSQI feature-based classifiers. In order to analyze
and compare the performances of each classifier better, first

FIGURE 2. Demonstration of the evaluation process for the pattern of
bSQI-2.

FIGURE 3. Classification performances (mAcc, Se, Sp) for both single
GbSQI feature-based classifier and multiple GbSQI feature-based
classifier. Green and red lines represent the performances of single GbSQI
feature-based classifier and multiple GbSQI feature-based classifier,
respectively. The shadow ranges represent the corresponding standard
deviations (SDs). Horizontal axis represents the sorted GbSQI features by
their mAcc values for single GbSQI feature-based classifier or the
numbers of multiple GbSQI features used for multiple GbSQI
feature-based classifier. Black dotted lines represent the results from the
original bSQI-2 method using ‘ep_limited’ and ‘wqrs’ detectors as
reference. Because the original bSQI only belonged to bSQI-2, other
patterns did not have this reference values. Therefore, the black dotted
lines were only in the plots of bSQI-2.

we sored the results mAcc from high to low, then we pre-
sented the results at 11 key points: the best mAcc, the mAcc
corresponding to the top 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% points respectively, as well as the worst one.
Tables 4 and 5 reported the quantitative results respectively.
Figure 4 shows the line chart, solid lines representing the
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FIGURE 4. The line chart of the classified results (mAcc) of single-feature
(solid lines) and multi-features combination (dotted lines).

classified results (mAcc) of single feature and dotted line
representing the multi-feature combination.

The original bSQI proposed by Li et al. was based on the
QRS detectors combination (1 ‘ep_limited’ and 10 ‘wqrs’
algorithms). In this paper. this classifier output the result
mAcc of 91.81%. The original bSQI belonged to bSQI-2 in
this study. 45 bSQI-2 classifiers were developed based on the
ten QRS detectors. There were 18 bSQI-2 classifiers whose
performances greater than 91.81%, while 26 bSQI-2 clas-
sifiers were less than 91.81%, i.e. 40% bSQI-2 classifiers
perform better than original bSQI. Besides, the best result has
reached 93.74% for bSQI-2 with an increasement about 2%.
These results showed that generalizing bSQI had a great
impact on bSQI-2. Not only bSQI-2 pattern, bSQI-3 to
bSQI-6 also showed the better performance, as shown
in Table 4. However, the increase in classified performance
was limited. The best result was only increased by 0.29%
from bSQI-6. Besides, the performances of bSQI-7 and
bSQI-8 were gradually declining.

As shown in Tables 4 and 5 and Fig. 4, the performances
of the single GbSQI feature-based classifiers and the multi-
ple GbSQI feature-based classifiers had a certain difference.
For the single GbSQI feature-based classifiers, in the same
pattern, the performances of the classifiers with different
QRS detector had been remarkably different. The maximum
difference was 8.36% from bSQI-2 with the highest mAcc
of 93.74% and lowest mAcc of 85.38%. However, this dif-
ference was not obvious in the multiple GbSQI feature-based
classifiers. The maximum was only 1.62% from bSQI-4.

Besides, the single GbSQI feature-based classifiers and
the multiple GbSQI feature-based classifiers also had the
same feature. The classified performances of each pat-
tern had both very little difference. For the single GbSQI
feature-based classifiers, the difference was only 0.57%
(94.03% of bSQI-6 and 93.40% of bSQI-8). While in the

TABLE 4. The classified results of single-feature for seven different
patterns.

TABLE 5. The classified results of multi-feature combination for seven
different patterns.

TABLE 6. Top three single GbSQI feature-based classifiers in each pattern.

multiple GbSQI feature-based classifiers, this difference was
only 0.94% (94.76 % of bSQI-6 and 93.70% of bSQI-8).

Table 6 shows the top three single GbSQI feature-based
classifiers in each pattern. Figure 5 counts the occurrence
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FIGURE 5. The occurrence frequency of each method in the top three
single GbSQI feature-based classifiers in each pattern.

frequency for each QRS detector appeared in Table 6.
Detector 5 (U3) has the highest frequency, and detector 9
(UNSW) have the second highest frequency, while detector 2
(RS-slope) has the lowest frequency. Therefore, it is recom-
mended to select U3, UNSW, DOM and OKB detectors to
establish the GbSQI.

TABLE 7. Top three single GbSQI feature-based classifiers in each pattern.

In this study, all of the tests were implemented inMATLAB
2017a (The MathWorks, Inc., Natick, MA, USA) on Intel
TM i5 CPU 3.30 GHz. Table 7 illustrates the mean time
costs and SD values of ten QRS detectors by analyzing
12,000 10-s ECG segments in the 2011 PhysioNet/CinC
Challenge database. All these ten detectors reported high cal-
culation efficiency (<20ms) except ‘wqrs’ (mean 123ms and
SD 10.27 ms). Detector 4 FSM had the highest calculation
efficiency (mean 0.27 ms and SD 0.06 ms).

IV. DISCUSSION
In this study, we generalized the two QRS detector-based
bSQI to multiple QRS detector-based bSQI (GbSQI), to sys-
tematically test the effects of the type and number of QRS
detectors on the SQA performance. Ten QRS detectors were
selected to establish different GbSQI patterns, and seven pat-
terns of GbSQI were tested. The classification performances
of single GbSQI feature-based classifier and multiple GbSQI
feature-based classifier were also systematically analyzed.

For the single GbSQI feature-based classifier, from bSQI-2
to bSQI-8, the best classification results of each pattern
increased initially and then decreased. In addition, the best
classification results were very similar for all the seven
patterns. The biggest difference was only 0.57%. bSQI-6
output the highest results with mAcc of 94.03%, while
bSQI-8 reported the lowest mAcc of 93.40%. From Table 6,
we can find that the top single GbSQI feature-based classi-
fiers of each pattern almost all includedQRS detectors 5 and 9
(U3 and UNSW algorithms). These two detectors also had
the highest occurrence frequency (20 and 16 respectively)
in the top three combinations of QRS detection methods,
as shown in the Fig. 5. However, comparing vertical classi-
fied results in the Table 4, we found that the performances
of the single GbSQI feature-based classifiers with different
QRS detector had remarkably difference in the same pat-
tern. Figure 4 clearly showed the same situation. All these
phenomena highlighted the importance of the QRS detectors
for the single GbSQI feature-based classifier. In addition,
overmuch QRS detectors could not improve the classification
performance, on the contrary, it would weaken the sensitivity,
so reduce the performance and also increase the computa-
tional cost.

For the multiple GbSQI feature-based classifier, the clas-
sification results were slightly better than the single GbSQI
feature-based classifier. Comparing with the single GbSQI
feature-based classifier, the situation was different. On the
one hand, the best classification results of each pattern had
difference. bSQI-4 pattern showed the best performance.
This pattern was more flexible and could get the specificity
of multi QRS detectors by multiple features. On the other
hand, in the same pattern, the performance of the classi-
fier increased initially and then held steady as the features
increasing. The classification performance was not propor-
tional to features number. Taking bSQI-2 as an example,
the classifier with 37 features reported the highest mAcc of
94.66%, while the classifier with 45 features reported the
mAcc of 94.52%. Overmuch features could not improve the
classification performance, on the contrary, it would weaken
the sensitivity, so reduce the performance and also increase
the computational cost.

No matter single GbSQI feature-based classifier or the
multiple GbSQI feature-based classifier, the classification
results all demonstrated the importance of QRS detectors
selection. Two aspects should be considered for the QRS
selection: one is the own character of the QRS detection
algorithm, the other is the relationship between the selected
detectors. Different QRS detection algorithms were sensitive
to different types of noise [17]. First, the selected detectors
should have high sensitivity and specific in QRS detection.
Second, the selected detectors should be complementary.

A. INFLUENCE OF THE DETECTION PERFORMANCE
OF QRS DETECTORS
In order to further analyze the detection performances of
these ten detectors, we also systematically evaluated these
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FIGURE 6. Detection results of these QRS detectors on six different ECG
databases.

TABLE 8. The list of six ECG databases.

detectors on six ECG databases [35]. Figure 6 shows the
detection results, including the line graph for six databases
and histogram for the average values. (‘wqrs’ detector was
from the WFDB Software Package of PhysioNet [23]. The
main role of this method was to compare the performance
of GbSQI to the original bSQI. Due to this detector had
special requirements on the data format, this paper did not
test its performance on these six databases.). Table 8 shows
the details of these six databases.

As shown in the Fig. 6, it should be noted that for the
clean clinical ECG signals including normal subjects and
arrhythmia patients, most QRS detectors had the similar
performances and higher detection accuracies, whereas, all
these algorithms did not do well for the poor signal quality
ECG signals with high noise level and the performances were
also with lager difference. The average F1 values of these
six databases could further demonstrate the performances of
these detectors. The top five detectors were U3, DOM, ‘jqrs,’
OKB, andUNSW. As shown in the Fig. 5, these five detectors
were also the top five with the highest occurrence frequency
in the top three single GbSQI feature-based classifiers in each
pattern. Meanwhile, it was clear that the RS-slope detector
had the worst detection performance, it also with the lowest
frequency. In the Fig. 3, it was obvious that there were all
rapid declines in the results mAcc of each pattern. The reason
for these rapid declines was the RS-slope detector. For each
pattern, when method 2 RS-slope detector appeared in the
combination of the classifier, the classified results declined
rapidly. Due to the length of space, we cannot show the details
of all patterns. Table 9 shows the detailed classified results
of single-feature for bSQI-2 patterns. From this table, we
can find that the combinations with method 2 RS-slope all

TABLE 9. The detailed classified results of single-feature for
bSQI-2 patterns.

41898 VOLUME 6, 2018



F. Liu et al.: Dynamic ECG Signal Quality Evaluation Based on the Generalized bSQI Index

had the worst classified results, marked by green. The result
mAcc declined rapidly since the method 2 RS-slope detector
appeared in the combination.

Obviously, the detection performance of the detectors was
the most crucial point for the GbSQI classifier. If the selected
detector had poor detection performance, the classified per-
formance of the constructed classifier would be influenced
greatly. Therefore, before selecting, it was necessary to eval-
uate the detector’s performance. It should be noted that the
databases used for evaluated was not only considering the
clean ECG database but also the dynamic database with low
signal quality. Since themost current QRS detectors had great
performance on the clean ECG databases. Employing multi
databases would be a good chose to test the performances of
the QRS detectors.

B. INFLUENCE OF THE RELATIONSHIP BETWEEN
THE SELECTED DETECTORS
The second key point was the relationship between the
selected detectors for the GbSQI classifier. Although a large
number of QRS detectors have been exited, almost all QRS
detectors existed were based on the QRS complexes fea-
ture [36]. To track down the origin of most QRS detectors
further, four origins were found: power-based, amplitude-
based, slope-based, and curve length-based [37]. And these
four origins were from the remarkable feature of QRS com-
plexes: high power, high amplitude, steep slope, and long
curve length. Figure 7 showed the origins and details of
all these ten detectors. The details were divided into four
aspects: filtering, extract feature method, threshold setting,
and post-processing. Since ECG signals were easily disturbed
by noise, the filtering was the first step frequently. Most
detectors employed band-pass or low-pass filtering with dif-
ferent frequency range. Andmedian filter was used to remove
baseline drift in some detectors. The second step was to
extract feature values. Derivative, squaring, and integration
were the most common methods to enhance QRS waves.
Some special algorithms were also employed, such as sixth
power, U3 and length transform. All these feature extracting
methods were to enhance the four remarkable features of
QRS complexes. The third step was threshold setting. Some
detectors employed the simple method to calculate the thresh-
old. For example, one single fixed threshold was designed
to be the 98% max value of the integrated signal in ‘jqrs’
method. Whereas, in some detectors, the threshold setting
was a comprehensive process. For example, in the ep_limited
method, two sets of adaptive thresholds were employed to
detect the QRS peaks in both filtered and integrated energy
signals. Moreover, each set included double thresholds. The
threshold I adaptively adjusted based upon the detected QRS
signal and noise peak levels. The QRS/noise peak levels were
designed to be the median value of the eight most-recent
beats. The threshold II was set to 30% of the threshold I.
As the final step, post-processing was mainly used to find
the missed R peak and to eliminate the possibility of a false
detection. If the current RR interval was too large, search back

FIGURE 7. Relationship analysis for the selected ten QRS detectors.

process would start to find the missed R peak. And if the
current RR interval was too small, refractory blanking tech-
nology would be used to eliminate the possibility of a false
detection. Due to space limitations, this paper only simply
introduced theseQRS detectors. Formore information, please
pay attention to the corresponding references

In Table 6, it was obvious that there were seven combi-
nations (marked in bold) with the detectors having different
origins from the nine combinations in the top three sin-
gle GbSQI feature-based classifiers, i.e., the proportion was
closed to 80%. (Here, we only discussed the pattern bSQI-2,
bSQI-3, and bSQI-4, since the patterns from bSQ-5 to
bSQI-8 must include the detectors from the same origin.)

Taking the best single GbSQI feature-based classifier of
bSQI-4 pattern as an example, U3, UNSW, DOM, and OKB
detectors were selected. These four detectors were also with
the top four highest frequency. The top four QRS detectors
were emphasized by the red border. It was clear that these four
detectors were from different origins. U3 was based on the
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QRS curve-length length; UNSW was based on the enhanc-
ing the QRS amplitude; DOM was based on the extreme
point generated by QRS slope changing; OKB was based
on the enhancing QRS power through integration. Therefore,
we suggested that it was better to select the QRS detectors
from different origin. In addition, accurate threshold setting
and post-processing were also necessary to be considered.
DOM was good at high-frequency noise by positive and
negative thresholds. UNSW could remove spurious peaks by
smoothing the feature.U3 transform could deal with baseline
drift better. OKB method could reject the influence of the
sudden amplitude change by double moving integration.

However, it was not an absolute issue. From table 8,
it could be found that some combinations with the same origin
could also show the well classified results, such as combina-
tion (3,8). Although detectors 3 and 8 were from the same
origin, they employed very different way to extract feature.
Whereas, the combinations (1,4), (4,7) and (1,7) showed the
bad results. These three detectors had not only the same origin
but also the same way to extract the feature.

From above analysis, it was obvious that the QRS detectors
selecting was very important issue for the GbSQI classi-
fier. The detection performance was the first problems to
be considered. The evaluated results were better from multi
databases including the dynamic, multi-noise signals. The
relationship was second issue to be considered. It was better
to select the detectors with many differences in every aspect.
In this way, the selected detectors could be complementary on
the noise resistance. It should be noted that the second issue
was on the basis of the first problem.

Although the performance of the multiple GbSQI feature-
based classifier was slightly better than that of the sin-
gle GbSQI feature-based classifier, computational efficiency
and expense also need to be considered, especially for the
mobile or wearable device. Clearly, the multiple GbSQI
feature-based classifier needs more time cost and internal
storage, since it was based on more features than the single
GbSQI feature-based classifier. Therefore, it was not worth
pursuing a small increase in accuracy with a large compu-
tational cost. In this way, the single GbSQI feature-based
classifier would be a better choice than the multiple GbSQI
feature-based classifier. In the single GbSQI feature-based
classifier, bSQI-4 and bSQI-6 showed the best performances.
Researchers can choose the classifier based on their own
needs.

There was also a special phenomenon that the performance
of classifiers with the even number detectors were better than
those with odd number detectors. No matter single GbSQI
feature-based classifier or the multiple GbSQI feature-based
classifier, the performance of bSQI-2 was better than that
of bSQI-3, bSQI-4 was better than bSQI-5, and bSQI-6 was
greater than bSQI-7, as shown in the Tables 4 and 5. Accord-
ingly, the number of the selected QRS detectors was recom-
mend to be an even number, such as 2, 4 or 6.

It should be noted that, the bSQI-2 classifier with the
QRS detectors combination (1 ‘ep_limited’ and 10 ‘wqrs’

algorithms) was tested on the same ECG database in the
work [13], and it gave the best result of 89.9%. In this
paper, this classifier output the result mAcc of 91.81%. There
are two major reasons for this. First, the definition of the
accuracy was different between our work and the reference.
Second, since we relabeled the data, the labeling methods
were different.

A final important note is that the ten fast and effective
QRS detectors we chose are unlikely to be the optimal algo-
rithms. Many detectors could be selected for different con-
texts, equipment, diagnostic outcomes, or patient populations
(particularly for patients with many arrhythmias). The gen-
eral framework we have described in this paper is sufficiently
flexible to allow the use of an arbitrary number of QRS
detectors, selecting those that are most appropriate for a given
situation. It should be noted that this study only analyzed
the performance of GbSQI in the QRS detectors selecting
and pattern establishing. Indeed, there are many other signal
quality assessment indicators suggested in [2], [34], and [15].
If the optimal GbSQI was cooperated with other indexes,
the detecting results must be enhanced. Regarding the feature
selection, the literature described a method about how to
determine the most relevant group of features [38]. We con-
sider this as our future work.

V. CONCLUSION
In this study, we generalized the two QRS detectors-based
bSQI to multiple QRS detectors-based bSQI (GbSQI),
to compare the effects of the type and number of QRS
detectors on the SQA performances of GbSQI. The general
framework and the GbSQI definition described in this paper
were sufficiently flexible to allow the use of an arbitrary
number of QRS detectors, selecting those that aremost appro-
priate for a given situation. The results presented here indicate
that the detectors’ detection performance was the first key
point for detectors selection and relationship between the
selected detectors was second issue. From the results, we rec-
ommended using U3, UNSW, DOM, and OKB detectors for
calculating GbSQI. In conclusion, we have systematically
analyzed the performances of GbSQI based classifier. These
results and conclusions could offer reference for reasonably
employing GbSQI.
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