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1.  Introduction

The earliest detailed description of the various stages of sleep, based on the electroencephalogram (EEG), was 
provided by Loomis et al (1936, 1937) in the mid-1930s. In the early 1950s (Aserinsky and Kleitman 1953) 
identified rapid-eye-movement (REM) sleep, which is related to dreaming. Sleep has been traditionally divided 
into two broad types: non-REM (NREM) and REM sleep. The sleep staging criteria were standardized in 1968 
by Rechtschaffen and Kales (1968) (the ‘R&K rules’), based mostly on EEG changes, and dividing 30 s epochs 
of NREM sleep into a four further stages (stage I, stage II, stage III, stage IV). In 2004, the American Academy 
of Sleep Medicine (AASM) standards commissioned the AASM Visual Scoring Task Force to review the R&K 
scoring system and to combine stages III and IV into stage N3 (Iber et al 2007).
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Abstract
Objective: This study classifies sleep stages from a single lead electrocardiogram (ECG) using beat 
detection, cardiorespiratory coupling in the time-frequency domain and a deep convolutional neural 
network (CNN). Approach: An ECG-derived respiration (EDR) signal and synchronous beat-to-
beat heart rate variability (HRV) time series were derived from the ECG using previously described 
robust algorithms. A measure of cardiorespiratory coupling (CRC) was extracted by calculating 
the coherence and cross-spectrogram of the EDR and HRV signal in 5 min windows. A CNN 
was then trained to classify the sleep stages (wake, rapid-eye-movement (REM) sleep, non-REM 
(NREM) light sleep and NREM deep sleep) from the corresponding CRC spectrograms. A support 
vector machine was then used to combine the output of CNN with the other features derived from 
the ECG, including phase-rectified signal averaging (PRSA), sample entropy, as well as standard 
spectral and temporal HRV measures. The MIT-BIH Polysomnographic Database (SLPDB), the 
PhysioNet/Computing in Cardiology Challenge 2018 database (CinC2018) and the Sleep Heart 
Health Study (SHHS) database, all expert-annotated for sleep stages, were used to train and validate 
the algorithm. Main results: Ten-fold cross validation results showed that the proposed algorithm 
achieved an accuracy (Acc) of 75.4% and a Cohen’s kappa coefficient of κ  =  0.54 on the out of 
sample validation data in the classification of Wake, REM, NREM light and deep sleep in SLPDB. 
This rose to Acc  =  81.6% and κ  =  0.63 for the classification of Wake, REM sleep and NREM sleep 
and Acc  =  85.1% and κ  =  0.68 for the classification of NREM sleep versus REM/wakefulness in 
SLPDB. Significance: The proposed ECG-based sleep stage classification approach that represents the 
highest reported results on non-electroencephalographic data and uses datasets over ten times larger 
than those in previous studies. By using a state-of-the-art QRS detector and deep learning model, the 
system does not require human annotation and can therefore be scaled for mass analysis.
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Currently, the gold standard in terms of sleep disorder diagnosis is a sleep study, or an overnight polysom-
nogram (PSG) which includes multiple EEG electrodes, as well as electromyograms, electrooculargrams, pulse 
oximetry (usually on the finger tip), respiratory bands across the upper chest and lower abdomen, as well as actig-
raphy, audio and video at times. PSG studies are therefore cumbersome, intrusive and expensive. This combina-
tion of physical and psychological discomfort tends to inhibit a restful night’s sleep and leads to poor compliance 
beyond a single night of evaluation. Even relatively simple home study equipment can lead to a significant distur-
bance and inconvenience (Roebuck et al 2014). Moreover, it is well known that a single night’s sleep, or even sev-
eral nights of sleep, may not be sufficient to assess the quality of sleep of a subject (Wohlgemuth et al 1999, Herbst 
et al 2010). In response to these issues, actigraphic devices have often been used, although actigraphy has been 
shown to be a poor estimator of sleep onset latency and it has not been validated for measuring sleep stages (Mar-
tin and Hakim 2011). Actigraphy is also prone to overestimating sleep in certain patient groups, and although 
it has been shown to be accurate in measuring total sleep time among healthy subjects (with a sensitivity above 
90%, the ability to detect sleep is substantially reduced in patients with disturbed sleep (those who have frequent 
arousals and reduced total sleep time). Finally, we note that wrist worn devices do not capture torso movements 
(such as sleep) and provide poor measurements of physiology compared to devices attached to the torso.

The enormity of data that can be captured during sleep leads to another issue, that human scoring of the 
data is time consuming and also expensive. High inter-rater variabilities also confound the problem of manual 
scoring. (The overall agreement as measured by Cohen’s Kappa (κ) coefficient ranges from 0.6 to 0.9 depending 
on the sleep scoring guidelines and population being (Crowell et al 1997, 2002, Stepnowsky et al 2004, Ferri et al 
2005, Rosa et al 2006, Saito et al 2006). An automated approach to assessing sleep from multiple nights of data is 
therefore important. In Roebuck et al (2014) we provide an extensive review of most of the approaches to auto-
mated sleep analysis and their practical applications. The work presented here is focused on a high compliance, 
unobtrusive approach to monitoring physiological correlates of sleep, namely the electrocardiogram (ECG). 
Modern electrocardiographic patches can provide accurate physiological information pertinent to sleep and 
facilitate high compliance. Notably, both respiration and heart rate variability, which changes with sleep stages 
and sleep related health problems (such as sleep apnea), can be captured by such devices.

We are not the first to suggest the ECG is a potential vehicle for revealing approximate sleep structure. (We do 
not claim it provides a true resolution of 30 s epochs of sleep, as is tradition in sleep scoring, as noted later on.) 
Thomas et al (2005) developed an automated measure of cardiopulmonary coupling (CPC) during sleep using 
the power in specific bands of the single-lead electrocardiographic signal. The CPC, or as it is sometimes called, 
cardiorespiratory coupling (CRC), was measured using the power in specific bands of the cross-spectral density 
between the ECG-derived respiration signal (EDR) and the respiratory sinus arrhythmia signal (RSA) derived 
from ECG. The energy in specific bands was then thresholded (in an unspecified way) to produce an output 
of wakefulness/REM sleep (WR), unstable/CAP sleep, or stable/NCAP sleep. The authors reported a value of 
κ  =  0.627 on a training set and κ  =  0.439 on a test set, where the training and test sets included 35 polysomno-
grams each, selected from a total of 900 polysomnograms acquired at Beth Israel Deaconess Medical Center dur-
ing December 2003 to July 2005. No cross validation or bootstrapping of the 900 patients was performed.

Long et al (2014) described a dissimilarity measure which was computed between two respiratory effort sig-
nal segments with the same number of consecutive breaths. Using a set of 48 healthy subjects, a linear discrimi-
nant classifier and a ten-fold cross validation they reported an out-of-sample value of κ  =  0.48 for three-stage 
classification (Wake, REM sleep and NREM sleep) and of κ  =  0.41 for four-stage classification (Wake, REM 
sleep, light sleep and deep sleep). Their method therefore exhibited a moderate ability to distinguish between 
sleep stages, with the exception of substantial confusion between REM sleep and wakefulness.

Fonseca et al (2015) proposed a sleep stage classification algorithm based on heart rate variability (HRV) 
calculated from ECG and respiratory effort from respiratory inductance plethysmography (RIP). A total of 142 
features were extracted from cardiac and respiratory activity, and from cardiorespiratory interaction (CRI) using 
a sliding window (of undefined length) centered on each 30 s epoch. A multi-class Bayesian linear discriminant 
with time-varying prior probabilities was used for classification. The authors reported an out of sample perfor-
mance using ten-fold cross validation of κ  =  0.49 and an accuracy (Acc) of 69% in the four-class classification 
of Wake, REM, light and deep sleep and κ  =  0.56 and Acc  =  80% in the three class problem of differentiating, 
Wake, REM sleep and NREM sleep.

In 2017, Fonseca et al (2017) subsequently reported a new sleep stage classifier based on a conditional 
random field model. From ECG and RIP signals, 33 respiratory features, 81 cardiac features and 3 CRI fea-
tures were extracted. A total of 342 recordings from 180 subjects were used for training and validation using 
ten-fold cross validation. Four separate non-complementary two-class detection tasks were considered: N3, 
NREM, REM and Wake separately, in a ‘one versus all’ approach. They reported an out of sample κ  =  0.41 
and Acc  =  87.4% for N3 detection, κ  =  0.55 and Acc  =  78.7% for NREM, κ  =  0.51 and Acc  =  88.5% for 
REM and κ  =  0.51 and Acc  =  85.7% for Wake detection.

Physiol. Meas. 39 (2018) 124005 (12pp)
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Tataraidze et al (2016) presented a three-step classifier for sleep stages using ECG and RIP signals. At first a 
gradient boosted machine and a random forest classifier were used in parallel to process the features extracted 
from ECG and RIP, followed by a linear discriminant analysis (LDA) to predict class probabilities. Then a simple 
linear combination was used to make prediction. The algorithm was tested on a polysomnography dataset with 
625 subjects with five-fold cross-validation. A value of κ  =  0.57 and an accuracy of 71.4% in the four-class clas-
sification of Wake, REM, light and deep sleep was reported.

Yoon et al (2017) developed an automatic algorithm to determine REM sleep by ECG. After obtained 14 HRV 
parameters from ECG, a principal component analysis (PCA) was applied to extract the principal components 
where the first principal component was used to represent the major fluctuation reflected by the pattens of a 
sleep cycle. The algorithm was trained on a set of 26 subjects and evaluated on a validation set of 25 subjects. 
They reported a value of κ  =  0.63 and 0.61, an accuracy of 87.1% and 87.0% for the training and validation sets 
respectively in the two-class classification of REM and NREM including N1, N2, N3 and wakefulness.

Wei et al (2018) described a neural network approach applied to the ECG to classify the sleep stages into one 
of three classes; Wake, REM and NREM. A total of 11 features were extracted from the raw ECG and were pre-
sented to a four-layer neural network. Cross-validation was used on the MIT-BIH Polysomnographic Database 
for validation. An accuracy of 77% and κ  =  0.56 were reported for the three-class problem.

In the work presented in this article, the coherence and cross-spectrogram of the EDR and RSA signals were 
calculated on a 5 min epoch basis. Rather than selecting predetermined frequencies and optimizing amplitude or 
power thresholds, a convolutional neural network (CNN) was used to automatically identify the most relevant 
time-frequency cross spectral and coherence features associated with a given sleep stage. CNNs were originally 
developed to provide rotationally invariant spatial filters for images. Since the spectrogram is a matrix of num-
bers with spatiotemporal correlations that are similar to images, with specific subregions forming features indic-
ative of specific physiological states, the CNN is a natural framework for identifying such features. A support 
vector machine (SVM) was then used to combine the output of the CNN with the other features derived from 
ECG, based upon heart rate variability, and signal quality indices (SQI) to produce a classification of sleep stage.

2.  Methods

2.1.  Dataset
For this work we used three databases: (1) the MIT-BIH Polysomnographic Database (SLPDB) (Goldberger 
et al 2000), (2) the Physionet/Computing in Cardiology Challenge 2018 training database (CinC2018tDB), 
(Ghassemi et  al 2018) and (3) the Sleep Heart Health Study visit 1 (SHHSv1) database (Quan et  al 1997, 
Redline et al 1998, Dean et al 2016, Zhang et al 2018). The SLPDB database includes 18 recordings from 16 
subjects of multiple physiological signals during sleep, containing over 80 h of four-, six-, and seven-channel 
polysomnographic recordings, each with a single channel of ECG annotated beat-by-beat, and EEG and 
respiration signals annotated with respect to sleep stages and apnea. The CinC2018tDB includes 994 subjects who 
were monitored at Massachusetts General Hospital (MGH) sleep laboratories for the diagnosis of sleep disorders, 
containing over 7660 h of a variety of physiological signals recorded as they slept through the night including 
EEG, electrooculography (EOG), electromyography (EMG), ECG, and oxygen saturation (SaO2) together with 
arousal and sleep stages annotations. The SHHS database is a multi-center cohort study implemented by the 
National Heart, Lung, and Blood Institute to determine the cardiovascular and other consequences of sleep-
disordered breathing. In all, 6441 men and women aged 40 years and older were enrolled between 1995 and 1998 
to take part in SHHS Visit 1, including 5793 recordings (SHHSv1). During 2001–2003, a second polysomnogram 
(SHHSv2) was created using 3295 of the original participants. The entirety of the 5793 recordings in the SHHSv1 
database was used without exclusion. Only the ECG signal was used in this study as an input and the expert sleep 
stages as targets/class labels.

The sleep stage annotations include six categories: wake, REM sleep, sleep stage 1, sleep stage 2, sleep stage 3 
and sleep stage 4 in the SLPDB; wake, REM sleep, sleep stage 1, sleep stage 2, sleep stage 3 and undefined in the 
CinC2018tDB database; and wake, REM sleep, sleep stage 1, sleep stage 2, sleep stage 3 and sleep stage 4 in the 
SHHSv1 database. In this study, we combined sleep stage 1 and sleep stage 2, denoted NREM light sleep and com-
bined sleep stage 3 and sleep stage 4, denoted NREM deep sleep. Data epochs were therefore classified into four 
categories, or ‘states’; Wake, REM sleep, NREM light sleep and NREM deep sleep. The data were annotated in 
non-overlapping 30 s epochs by experts. Since 30 s is too short an interval to contain a sufficient number of heart 
beats for estimating autonomic activity, we used 5 min windows for an epoch, sliding the window forward every 
one minute in SLPDB and CinC2018tDB, but using non-overlapped window in SHHSv1 to keep the number of 
total epochs tractable. An epoch was selected only when the annotations within the 5 min window belonged to 
the same state. This prevented the inclusion of multiple sleep stages in a single epoch and reduced the effect of 
nonstationarities. A total of 2829 epochs were selected in SLPDB, 261 946 epochs in CinC2018tDB, and 400 547 

epochs in SHHSv1 database, as shown in table 1.

Physiol. Meas. 39 (2018) 124005 (12pp)
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2.2.  Preprocessing
The ECG signals were preprocessed by a finite impulse response (FIR) lowpass filter with a band stop at 22 Hz 
and a FIR highpass filter and with at corner frequency of 1.2 Hz. A state-of-the-art QRS detector (jqrs) was used 
for ECG R-peak detection (Johnson et al 2015). The detector consists of a window-based peak energy detector, 
which is extremely robust to noise. An ECG signal quality index (bSQI), which assesses the signal quality or noise 
levels of the signals, was extracted from the ECG and used to accept the epochs for further processing or reject 
the epochs if the signal quality of ECG was too low to be trusted (Li et al 2008). A sliding 10 s window was used, 
evaluated every second with a nine second overlap. If the value of the signal quality index was lower than a preset 
threshold, the epoch was rejected.

2.3.  Cardiorespiratory coupling spectrogram calculation
After R-peak detection and derivation of the RR tachograms, RSA and EDR time series were extracted. Outliers 
due to false or missed R-peak detection were removed using a sliding window average filter with a length of 41 
data points. Central points lying outside 20% of the window average were rejected. The resulting normal-to-
normal (NN) interval series and its associated EDR signal were then linearly resampled at 4 Hz, so that the 5 min 
epoch contained 1200 samples. The cross-spectral power and coherence of these two signals were calculated 
over a 512-sample (128 s) window. Then the 512-sample sliding window was advanced every 40 samples (10 s) 
to obtain 18 cross-spectral estimates. By placing the cross-spectral curves in order of time, we obtained a CRC 
spectrogram of dimensions 50 × 18, where the frequency range was from 0 Hz to 0.4 Hz (taken 50 points) and 
the time window was five minutes. An example of a CRC spectrogram for each sleep stage is shown in figure 1. 
The CRC spectrogram for each state, average over all epochs in SLPDB, is shown in figure 2.

2.4.  Convolutional neural network implementation
The CNN toolbox used in this study was written in Matlab R2016b (Vedaldi and Lenc 2015, www.vlfeat.
org/matconvnet/). The CNN model used consisted of three convolutional layers, two max pooling layers 
(implemented after the first and the second convolutional layer), a rectified linear unit (ReLU) layer and finally 
a fully connected layer, as shown in figure 3. An n × m sized map is convolved with the input image at each 
convolutional layer, resulting in an output with n − 1 × m − 1 reduction in size from the input. The 2 × 2 max 
pooling layer downsamples the input by a factor of two in both directions, dropping 75% of data size while 
retaining most discernible features for classification. The final layer of convolution computes the input into a 
single value, which after increasing nonlinear properties by the ReLU layer, is passed into the fully connected layer 
thereby producing the final resulting probabilities for each class. Figure 3 illustrates this architecture.

2.5.  Additional features
In order to capture information not present in the cross spectral coherence, we also calculated several HRV 
metrics (Vest et al 2018). These included deceleration and acceleration capacity from phase-rectified signal 
averaging (PRSA, (Campana et al 2010)), sample entropy (Costa et al 2005), and other HRV metrics (standard 
deviation of NN intervals (SDNN) and the ratio of low frequency and high frequency spectral power (LF/HF-
ratio)). We also included several novel indices including the ratio of the sum of the two maximal coherent cross-
power peaks in the low-frequency band (0.01–0.1 Hz) to the sum of the two maximal peaks in the high-frequency 
band (0.1–0.4 Hz), the ratio of the energy between the low-frequency and high-frequency band, and the signal 
quality index.

2.6.  Support vector machine
To combine the above features and produce a final sleep stage class probability, a SVM classifier was used (Chang 
and Lin 2011, www.csie.ntu.edu.tw/~cjlin/libsvm/). The SVM employed a Gaussian radial basis function kernel, 
defined by K(xn, xm) = exp(γ||xn − xm||2), where γ  controls the width of the Gaussian and plays a role in 
controlling the flexibility of the resulting classifier. xn  and xm are two vectors expressed in the initial feature 
space. We used the LibSVM libraries, which decouples the multiclass classification problem to several two-class 
problems and a voting strategy is then used: each binary classification is considered to be a voting entity, where 
votes can be cast for all data samples. A sample is designated to be in a class with the maximum number of votes.

Table 1.  Distribution of epochs by state for each database used in this study.

Database Wake REM NREM light NREM deep Total

SLPDB 914 (32%) 185 (7%) 1585 (56%) 145 (5%) 2829

CinC2018tDB 34 711 (13%) 37 593 (14%) 160 748 (61%) 28 894 (11%) 261 946

SHHSv1 130 688 (33%) 60 234 (15%) 167 343 (42%) 42 282 (11%) 400 547

Physiol. Meas. 39 (2018) 124005 (12pp)
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The probability outputs of CNN were fed into the SVM at its input, together with the individual HRV features 
extracted from the same 5 min ECG, as described in section 2.5.

2.7.  K-fold cross-validation
The 16 subjects in SLPDB, and the recordings from CinC2018tDB and SHHSv1 were randomly allocated into ten 
subsets (folds, K = 10) of data respectively. Grouping was performed by subject number rather than by the total 
epochs, (i.e. stratified by subject) so that the data from one subject would not appear in both the training fold or 
the test fold. K − 1 folds of the dataset were used for training, after which the network was saved, it was tested on 
the remaining (validation) fold. This process was repeated K times with each of the K folds tested and the results 
were averaged or accumulated.

2.8.  Evaluation method
The classification accuracy (Acc) and Cohen’s Kappa (κ) were used to evaluate the performance of the algorithm. 
The Acc is defined as follows:

Acc =

q∑
k=1

nkk/N

where q is the number of categories, N is the total number of epochs and nkk is the number of correct classifications. 
Cohen’s Kappa is defined as

κ =
pa − pe

1 − pe

where pa =
∑q

k=1 pkk, pe =
∑q

k=1 pk+p+k , pkk  represents the percentage of epochs classified into category k by 
the algorithm and by the annotated label; pk+ and p+k  represent the percentage of epochs assigned to category k 
by the algorithm and annotated label respectively.

Figure 1.  Examples of CRC spectrograms for each sleep state: (a) Wake; (b) REM sleep; (c) NREM light sleep; (d) NREM deep sleep. 
Hotter colors indicate higher cross spectral coherence (inherently normalized between 0 and 1).

Physiol. Meas. 39 (2018) 124005 (12pp)
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3.  Results

Table 2 shows the performance of the ten-fold cross validation in SLPDB. The four classes, or states, are Wake, 
REM sleep, NREM light sleep and NREM deep sleep. The three classes are broken into two categories: (a) Wake, 
REM sleep and NREM sleep; and (b) Wake and REM combined, NREM light sleep, and NREM deep sleep. The 
two class problem combines Wake and REM sleep as one class and NREM sleep as the other. The average values 
are the average accuracy of the held-out fold in the ten validation runs. The accumulation accuracy and κ were 

obtained by accumulating the results from every validation fold.
An accuracy of 75.4% and a Cohen’s kappa coefficient of 0.54 on out of sample validation in the classification 

of Wake, REM, light and deep sleep was obtained. For the three class problem an Acc  =  81.6% and κ  =  0.63 for the 
classification of Wake, REM sleep and NREM sleep and Acc  =  85.1% and κ  =  0.68 for the classification of NREM 
sleep versus REM/wakefulness was found. The confusion matrix are tabled in the appendix (tables A1–A4).

Figure 2.  Average of CRC spectrogram over all epochs in SLPDB for each state: (a) Wake; (b) REM sleep; (c) NREM light sleep; (d) 
NREM deep sleep. Hotter colors indicate higher cross spectral coherence (inherently normalized between 0 and 1).

Figure 3.  Convolutional neural network structure.

Physiol. Meas. 39 (2018) 124005 (12pp)
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Table 3 shows the performance of the ten-fold cross validation in CinC2018tDB. An accuracy (Acc) of 65.6% 
and a Cohen’s kappa coefficient of 0.31 on out of sample validation in the classification of Wake, REM, light and 
deep sleep was achieved. For the three class problem an Acc  =  76.5% and κ  =  0.42 for the classification of Wake, 
REM sleep and NREM sleep and Acc  =  79.4% and κ  =  0.48 for the classification of NREM sleep versus REM/

wakefulness was accomplished.
Table 4 shows the performance of the ten-fold cross validation in SHHSv1. An accuracy (Acc) of 65.9% and a 

Cohen’s kappa coefficient of 0.47 on out of sample validation in the classification of Wake, REM, light and deep 
sleep was achieved. For the three class problem an Acc  =  75.3% and κ  =  0.57 for the classification of Wake, REM 
sleep and NREM sleep and Acc  =  80.8% and κ  =  0.61 for the classification of NREM sleep versus REM/wakeful-

ness was accomplished.
Figure 4 illustrates the output of our new approach to automated sleep structure identification for the two, 

three and four-class problem.

Table 5 shows the performance when different SQI thresholds were used to exclude noisy epochs in SLPDB.

4.  Discussion and conclusions

In this article we have presented a new approach to ECG-based sleep stage classification. Our results provide the 
highest accuracy compared to the state of the art (Fonseca et al 2015), with a 6.4% increase in accuracy and 0.05 
increase in Cohen’s kappa for the four class problem, a 1.6% increase in accuracy and 0.07 increase in Cohen’s 
kappa for the three class problem, and the highest reported two class results (see table 2). A comparison with the 
latest algorithms was shown in table 6.

Aside from the improved results over earlier studies, there are several features of our method that make it 
superior to previously reported best in class (Fonseca et al 2015). First, previous authors required the recording 
of a respiratory inductance plethysmography. This can be energy consuming, annoying for the user and require 
expert placement of electrodes. Respiratory signals in themselves are notoriously difficult signals to interpret 
and generalization to consumer use is probably impossible (and in all likelihood why no clinical grade consumer 
respiratory band devices have come to the market).

In this work, we used the cross-spectral power to measure the amplitudes coupling of EDR and RSA, and used 
coherence to reveal the phase relationship between these signals. It has been shown that although the amplitudes 
can be subject and pathology dependent, the phase changes with sleep stages is consistent across populations 

Table 2.  Performance of ten-fold cross validation in SLPDB.

Training folds Validation fold

Acc average (%) Acc average (%) Acc accumulation (%) κ

4 classes 86.9 ± 0.7 75.6 ± 9.0 75.4 0.54

3 classes(a) 92.8 ± 0.8 81.7 ± 7.5 81.6 0.63

3 classes(b) 91.5 ± 0.4 79.7 ± 10.1 79.8 0.61

2 classes 93.8 ± 0.4 85.0 ± 6.5 85.1 0.68

Table 3.  Performance of ten-fold cross validation in CinC2018tDB.

Training folds Validation fold

Acc average (%) Acc average (%) Acc accumulation (%) κ

4 classes 68.8 ± 0.2 65.6 ± 1.3 65.6 0.31

3 classes(a) 79.2 ± 0.1 76.5 ± 1.0 76.5 0.42

3 classes(b) 72.2 ± 0.1 68.2 ± 1.2 68.2 0.36

2 classes 81.3 ± 0.1 79.4 ± 0.9 79.4 0.48

Table 4.  Performance of ten-fold cross validation in SHHSv1.

Training folds Validation fold

Acc average (%) Acc average (%) Acc accumulation (%) κ

4 classes 67.0 ± 0.1 65.9 ± 0.7 65.9 0.47

3 classes(a) 76.3 ± 0.1 75.3 ± 0.5 75.3 0.57

3 classes(b) 72.3 ± 0.1 71.6 ± 0.4 71.6 0.49

2 classes 81.4 ± 0.1 80.8 ± 0.3 80.8 0.61

Physiol. Meas. 39 (2018) 124005 (12pp)
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(Thomas et al 2005). The product of the cross-spectrogram and the coherence can then be used as a quantitative 
measure of the cardiopulmonary coupling. However, we note that there are other measures of cardio-respiratory 
coupling that may prove useful quantities to measure in this context. Bartsch et al (2012, 2014) demonstrated 
three independent forms of cardio-respiratory coupling, such as RSA, cardio-respiratory phase synchronization 
(CRPS) and time delay stability analysis (TDS) and the stratification patterns with transitions across sleep stages. 
Comparing with RSA, the sensitivity of CRPS to sleep-stage transitions is ten times higher. Specifically, the CRPS 
reflects the degree of clustering of heartbeats at specific relative phases within each breathing cycle, and the TDS 
quantifies the stability of the time-delay with which bursts in the activity in one system are consistently followed 
by corresponding bursts in the other system.

Recently research has addressed sleep staging from the perspective of network physiology (Bashan et al 2012, 
D’Agostino and Scala 2014, Ivanov and Bartsch 2014, Bartsch et al 2015, Ivanov et al 2016). Bashan et al (2012) 
developed a framework to probe interactions among diverse systems and identify physiological networks. They 
found that each physiological state was characterized by a specific network structure, demonstrating an interplay 
between network topology and physiological function. Bartsch et al (2015) systematically studied how diverse 
physiologic systems in the human organism dynamically interact and collectively behave to produce distinct 
physiologic states and functions. The authors used TDS to identify and quantify networks of physiologic inter-

Figure 4.  A comparison of expert-scored hypnograms and the output from the proposed approach for the (i) four class problem, 
(ii) three class problem (a), (iii) three class problem (b), and (iv) two class problem. Note that each epoch is five minutes for the 
algorithm output and 30 s for the expert annotation, so rapid changes between epochs (less than 5 min) are undetectable.

Table 5.  Performance (Acc accumulation %) on validation fold by SQI-threshold selection in SLPDB.

SQI-threshold — 0.80 0.90 0.95

Epochs 2829 2814 2774 2658

Mean SQI ± SD 0.985 ± 0.07 0.988 ± 0.05 0.989 ± 0.04 0.992 ± 0.03

4 classes 75.4 76.3 76.3 75.9

3 classes(a) 81.6 82.5 82.6 82.0

3 classes(b) 79.8 80.2 80.0 79.9

2 classes 85.1 85.2 85.0 84.7
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actions from long-term continuous, multi-channel physiological recordings and found a sleep-stage stratifica-
tion pattern for brain–brain, brain-organ and organ–organ networks. In this paper we studied the physiologic 
interactions among heart and respiration with cardiorespiratory coupling of EDR and RSA extracted from ECG 
without an explicit modelling of this system. In that sense it represents a non-parametric approach. The interac-
tions of the cardiopulmonary system were converted to a CRC spectrogram and the different sleep stages of light 
sleep, deep sleep, REM sleep and wake exhibited characteristic differences in the CRC spectrogram which could 
then be classified by the proposed deep learning architecture.

We also note that with a cross spectral approach, the noise present during respiration is removed, since inco-
herent noise exhibits a very low amplitude or non-existent signal in our time-frequency plot. This lack of signal 
due to noise becomes a useful signal for us, and in fact including this in the CNN leads to higher accuracies/κ. 
This indicates that certain sleep stages exhibit more noise than others, and this noise level can be learned, if it does 
not swamp the signal.

We also note that the use of a time-frequency approach allows us to identify relatively short periods of physi-
ology (like sleep stages) and to capture nonstationary events. Since sleep stages are defined to be assessed on 30 
s epochs, and indeed, events can happen on a shorter time-scale, a method that can spot these (such as arousals) 
is essential in sleep analysis. In this study we used a relatively long window of 5 min epoch to generate the CRC 
spectrogram for sleep staging analysis. To evaluate our algorithm on a 30 s basis, we slide the 5 min window 
forward every 30 s to match the annotation of the 30 s epoch centred on the 5 min window. In this way we were 
able to match the epochs generated through traditional sleep staging approaches. Of course, this leads to a slight 
low-pass filtering effect that may dampen out shot term sudden shifts since data from the surrounding epochs are 
used, but the evaluation of a 30 s epoch-by-epoch basis is still valid. The classification performance of the algo-
rithm was tested by a 10-fold cross validation in the SLPDB. The results showed an Acc  =  66.2% and κ  =  0.36 on 
out of sample validation in the classification of Wake, REM, light and deep sleep, Acc  =  73.6% and κ  =  0.44 for 
the classification of Wake, REM sleep and NREM sleep and Acc  =  76.1% and κ  =  0.47 for the classification of 
NREM sleep versus REM/wakefulness. In the last decade or so there have been attempts to develop HRV metrics 
from shorter term windows, such as phase rectified signal averaging (Bauer et al 2006). Most recently, Hou et al 
(2016) presented a new approach on 30 s epochs during sleep. The authors constructed a complex network from 
short-term HRV based on a visibility graph algorithm and extracted four network measure parameters across 
sleep stages. However, these measures do not capture the interactions between respiration and heart rate, and so 
would not be useful in our analysis here.

Perhaps most importantly, we note that the use of a QRS detector in our work is important. Previous stud-
ies using ECG data have often used hand annotations of beat locations. As we have previously shown (Oster and 
Clifford 2015), the use of algorithms trained and tested on hand annotations significantly over-estimates the 
accuracy of the resultant algorithms and leads to a substandard approach in reality. For this reason, we have not 
included comparisons with other sleep staging algorithms based on ECG—it would be unfair to compare any 
technique which requires hand annotation of QRS complexes. In such scenarios, one might as well have recorded 
the EEG and had experts read the EEG. Since the accuracy of the EDR and RSA signals derived from ECG depend 

Table 6.  A comparison with the latest sleep staging algorithms.

Work Signals used Database Subjects (recordings) Classes k-fold Acc κ

Long et al (2014) RIP Part of SIESTA 48 out of 584 4 classes 10-fold 64.9 0.41

Fonseca et al (2015) ECG  +  RIP Part of SIESTA 48 out of 584 4 classes 10-fold 69 0.49

Tataraidze et al (2016) ECG  +  RIP Part of SHHSv1 625 out of 5793 4 classes 5-fold 71.4 0.57

Our work ECG SLPDB 16 (18) 4 classes 10-fold 75.4 0.54

Out work ECG SHHSv1 5793 4 classes 10-fold 65.9 0.47

Fonseca et al (2015) ECG  +  RIP Part of SIESTA 48 out of 584 3 classes 10-fold 80 0.56

Long et al (2014) RIP Part of SIESTA 48 out of 584 3 classes 10-fold 77.1 0.48

Wei et al (2018) ECG SLPDB 16 (18) 3 classes 10-folda 77 0.56

Our work ECG SLPDB 16 (18) 3 classes 10-fold 81.6 0.63

Out work ECG SHHSv1 5793 3 classes 10-fold 75.3 0.57

Thomas et al (2005) ECG Private 35train  +  35test  +  15test 2 classes — — 0.439

Fonseca et al (2017) ECG  +  RIP Part of SIESTA  +  private 180 (342) 2 classes 10-fold 78.71 0.55

Yoon et al (2017) ECG Private 26train  +  25test 2 classes — 87.03 0.61

Our work ECG SLPDB 16 (18) 2 classes 10-fold 85.1 0.68

Out work ECG SHHSv1 5793 2 classes 10-fold 80.8 0.61

a 10-fold by epochs, not by recordings.
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on the quality of the QRS detector, the accurate estimation of the HRV features and derivation of the CRC are 
naturally also a function of the quality of the ECG and the accuracy of the QRS detector. Poor QRS detection per-
formance is therefore likely to result in poor sleep staging classification. To illustrate the effect of different QRS 
detectors on sleep staging from automated ECG analysis, we compared the results when using an open source 
QRS detector, wqrs (Zong et al 2003), which is sensitive to noise. The 10-fold cross validation approach results 
in the SLPDB resulted in an out of sample four-class Acc  =  73.1% and κ  =  0.51 (Wake, REM, NREM light sleep 
and NREM deep sleep), a three-class Acc  =  77.7% and κ  =  0.56 (Wake, REM and NREM sleep) and a two-class 
Acc  =  81.6% and κ  =  0.61 (NREM sleep versus REM/wakefulness). These results are a modest but important 
2%–4% lower than the results using jqrs. However, we note that the CRC, which provides an estimate of the 
cardiopulmonary coupling, is in some sense robust to noise, since only coherent signals in both the respiration 
and heart rate will be detected. In some sense this has somewhat (although not entirely) mitigated the issue of 
noise. However, noisy segments of ECG are likely to be correlated to movements, which themselves are correlated 
with less deep sleep stages or wakefulness. This bias is likely to be learned by the deep learning architecture and 
therefore must be considered carefully in the context of the population on which the algorithm is trained. (This 
is of course true for all sleep staging approaches, regardless of which signals are used for sleep staging.) Therefore, 
using as accurate a beat detection algorithm as possible is still important.

Finally, we note that we have demonstrated robustness of the approach presented here across three databases 
with over ten times as many patients as any previous study. The use of an automated QRS detector made this 
approach possible.

There is one key limitation to our study in that we used relatively specific patient cohorts. Since abnormal 
conditions can reduce the inter-class agreement level of experts, then training becomes more difficult. Although 
this does not always directly impact on the eventual diagnosis, it can be significant for automated classification 
systems, which may disproportionately weight incorrectly labeled epochs during training. Inter-rater reliability/
agreement has been shown to vary enormously, with κ coefficient values ranging between 0.6 and 0.9 (Crowell 
et al 1997, 2002, Stepnowsky et al 2004, Ferri et al 2005, Rosa et al 2006, Saito et al 2006). Taking this into consid-
eration, we can see that the κ values we obtain of 0.54–0.68 are as good as can be expected.

In general, in order to ascertain if the method described here provides enough information to be diag
nostically useful for any given condition, the output from this method will have to be fed to another classifier (or 
expert). Sleep stages in themselves are rather uninformative, yet statistics derived from them are correlated with a 
range of conditions. For example, patients with major depressive disorder exhibit shortened latency to the onset 
of REM sleep (REM latency), an increased percentage of the night in REM sleep, a longer duration of the first 
REM period, and decreased amount of slow-wave sleep (Krystal 2012).

It may therefore be possible to identify a proxy for ECG-related REM-like sleep from our algorithm, and 
then identify thresholds for a given patient population, that although different to EEG-based REM thresholds, 
may never-the-less provide enough predictive power for patient screening or follow-up. On an individual basis, 
the ECG-based sleep structure estimate may be even more informative, allowing the user to identify treatment-
related improvements on a long term basis, something which is not feasible with EEG-based systems, since the 
user rarely tolerates more than a few nights of such measurements and expert-application of the electrodes is 
often needed.

In conclusion, we have described an improved system for estimating sleep structure from a cardiovascular 
time series that is robust to noise, and in fact takes advantage of the noise in the ECG to aid classification acc
uracy. The system described outperforms current reported systems and in general it could apply to any pulsatile 
signal from which a beat onset and a respiratory modulation can be observed, such as the photoplethysmogram. 
Perhaps most notably, the results provided here do not require human annotation and can therefore be scaled for 
mass analysis without restriction beyond the modest storage and computational power requirements of earlier 
works.
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