

PAPER

Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram

To cite this article: Qiao Li et al 2018 Physiol. Meas. 39 124005

View the article online for updates and enhancements.

Physiological Measurement

RECEIVED

PUBLISHED

31 August 2018 REVISED 21 November 2018

ACCEPTED FOR PUBLICATION

23 November 2018

21 December 2018

PAPER

Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram

Qiao Li¹, Qichen Li², Chengyu Liu³, Supreeth P Shashikumar⁴, Shamim Nemati¹ and Gari D Clifford^{1,5,6}

- ¹ Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
- ² Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology, United States of America
- ⁶ Department of Biomedical Informatics, Emory University, GA, United States of America

E-mail:gari@physionet.org

Keywords: sleep stage classification, electrocardiogram, cardiorespiratory coupling, deep convolutional neural network, cross-time-frequency domain

Abstract

Objective: This study classifies sleep stages from a single lead electrocardiogram (ECG) using beat detection, cardiorespiratory coupling in the time-frequency domain and a deep convolutional neural network (CNN). Approach: An ECG-derived respiration (EDR) signal and synchronous beat-tobeat heart rate variability (HRV) time series were derived from the ECG using previously described robust algorithms. A measure of cardiorespiratory coupling (CRC) was extracted by calculating the coherence and cross-spectrogram of the EDR and HRV signal in 5 min windows. A CNN was then trained to classify the sleep stages (wake, rapid-eye-movement (REM) sleep, non-REM (NREM) light sleep and NREM deep sleep) from the corresponding CRC spectrograms. A support vector machine was then used to combine the output of CNN with the other features derived from the ECG, including phase-rectified signal averaging (PRSA), sample entropy, as well as standard spectral and temporal HRV measures. The MIT-BIH Polysomnographic Database (SLPDB), the PhysioNet/Computing in Cardiology Challenge 2018 database (CinC2018) and the Sleep Heart Health Study (SHHS) database, all expert-annotated for sleep stages, were used to train and validate the algorithm. Main results: Ten-fold cross validation results showed that the proposed algorithm achieved an accuracy (Acc) of 75.4% and a Cohen's kappa coefficient of $\kappa = 0.54$ on the out of sample validation data in the classification of Wake, REM, NREM light and deep sleep in SLPDB. This rose to Acc = 81.6% and κ = 0.63 for the classification of Wake, REM sleep and NREM sleep and Acc = 85.1% and κ = 0.68 for the classification of NREM sleep versus REM/wakefulness in SLPDB. Significance: The proposed ECG-based sleep stage classification approach that represents the highest reported results on non-electroencephalographic data and uses datasets over ten times larger than those in previous studies. By using a state-of-the-art QRS detector and deep learning model, the system does not require human annotation and can therefore be scaled for mass analysis.

1. Introduction

The earliest detailed description of the various stages of sleep, based on the electroencephalogram (EEG), was provided by Loomis *et al* (1936, 1937) in the mid-1930s. In the early 1950s (Aserinsky and Kleitman 1953) identified rapid-eye-movement (REM) sleep, which is related to dreaming. Sleep has been traditionally divided into two broad types: non-REM (NREM) and REM sleep. The sleep staging criteria were standardized in 1968 by Rechtschaffen and Kales (1968) (the 'R&K rules'), based mostly on EEG changes, and dividing 30 s epochs of NREM sleep into a four further stages (stage I, stage II, stage III, stage IV). In 2004, the American Academy of Sleep Medicine (AASM) standards commissioned the AASM Visual Scoring Task Force to review the R&K scoring system and to combine stages III and IV into stage N3 (Iber *et al* 2007).

IPEM Institute of Physics and Engineering in Medicine

Currently, the gold standard in terms of sleep disorder diagnosis is a sleep study, or an overnight polysomnogram (PSG) which includes multiple EEG electrodes, as well as electromyograms, electrooculargrams, pulse oximetry (usually on the finger tip), respiratory bands across the upper chest and lower abdomen, as well as actigraphy, audio and video at times. PSG studies are therefore cumbersome, intrusive and expensive. This combination of physical and psychological discomfort tends to inhibit a restful night's sleep and leads to poor compliance beyond a single night of evaluation. Even relatively simple home study equipment can lead to a significant disturbance and inconvenience (Roebuck *et al* 2014). Moreover, it is well known that a single night's sleep, or even several nights of sleep, may not be sufficient to assess the quality of sleep of a subject (Wohlgemuth *et al* 1999, Herbst *et al* 2010). In response to these issues, actigraphic devices have often been used, although actigraphy has been shown to be a poor estimator of sleep onset latency and it has not been validated for measuring sleep stages (Martin and Hakim 2011). Actigraphy is also prone to overestimating sleep in certain patient groups, and although it has been shown to be accurate in measuring total sleep time among healthy subjects (with a sensitivity above 90%, the ability to detect sleep is substantially reduced in patients with disturbed sleep (those who have frequent arousals and reduced total sleep time). Finally, we note that wrist worn devices do not capture torso movements (such as sleep) and provide poor measurements of physiology compared to devices attached to the torso.

The enormity of data that can be captured during sleep leads to another issue, that human scoring of the data is time consuming and also expensive. High inter-rater variabilities also confound the problem of manual scoring. (The overall agreement as measured by Cohen's Kappa (κ) coefficient ranges from 0.6 to 0.9 depending on the sleep scoring guidelines and population being (Crowell *et al* 1997, 2002, Stepnowsky *et al* 2004, Ferri *et al* 2005, Rosa *et al* 2006, Saito *et al* 2006). An automated approach to assessing sleep from multiple nights of data is therefore important. In Roebuck *et al* (2014) we provide an extensive review of most of the approaches to automated sleep analysis and their practical applications. The work presented here is focused on a high compliance, unobtrusive approach to monitoring physiological correlates of sleep, namely the electrocardiogram (ECG). Modern electrocardiographic patches can provide accurate physiological information pertinent to sleep and facilitate high compliance. Notably, both respiration and heart rate variability, which changes with sleep stages and sleep related health problems (such as sleep apnea), can be captured by such devices.

We are not the first to suggest the ECG is a potential vehicle for revealing approximate sleep structure. (We do not claim it provides a true resolution of 30 s epochs of sleep, as is tradition in sleep scoring, as noted later on.) Thomas *et al* (2005) developed an automated measure of cardiopulmonary coupling (CPC) during sleep using the power in specific bands of the single-lead electrocardiographic signal. The CPC, or as it is sometimes called, cardiorespiratory coupling (CRC), was measured using the power in specific bands of the cross-spectral density between the ECG-derived respiration signal (EDR) and the respiratory sinus arrhythmia signal (RSA) derived from ECG. The energy in specific bands was then thresholded (in an unspecified way) to produce an output of wakefulness/REM sleep (WR), unstable/CAP sleep, or stable/NCAP sleep. The authors reported a value of $\kappa = 0.627$ on a training set and $\kappa = 0.439$ on a test set, where the training and test sets included 35 polysomnograms each, selected from a total of 900 polysomnograms acquired at Beth Israel Deaconess Medical Center during December 2003 to July 2005. No cross validation or bootstrapping of the 900 patients was performed.

Long *et al* (2014) described a dissimilarity measure which was computed between two respiratory effort signal segments with the same number of consecutive breaths. Using a set of 48 healthy subjects, a linear discriminant classifier and a ten-fold cross validation they reported an out-of-sample value of $\kappa = 0.48$ for three-stage classification (Wake, REM sleep and NREM sleep) and of $\kappa = 0.41$ for four-stage classification (Wake, REM sleep). Their method therefore exhibited a moderate ability to distinguish between sleep stages, with the exception of substantial confusion between REM sleep and wakefulness.

Fonseca *et al* (2015) proposed a sleep stage classification algorithm based on heart rate variability (HRV) calculated from ECG and respiratory effort from respiratory inductance plethysmography (RIP). A total of 142 features were extracted from cardiac and respiratory activity, and from cardiorespiratory interaction (CRI) using a sliding window (of undefined length) centered on each 30 s epoch. A multi-class Bayesian linear discriminant with time-varying prior probabilities was used for classification. The authors reported an out of sample performance using ten-fold cross validation of $\kappa = 0.49$ and an accuracy (Acc) of 69% in the four-class classification of Wake, REM, light and deep sleep and $\kappa = 0.56$ and Acc = 80% in the three class problem of differentiating, Wake, REM sleep and NREM sleep.

In 2017, Fonseca *et al* (2017) subsequently reported a new sleep stage classifier based on a conditional random field model. From ECG and RIP signals, 33 respiratory features, 81 cardiac features and 3 CRI features were extracted. A total of 342 recordings from 180 subjects were used for training and validation using ten-fold cross validation. Four separate non-complementary two-class detection tasks were considered: N3, NREM, REM and Wake separately, in a 'one versus all' approach. They reported an out of sample $\kappa = 0.41$ and Acc = 87.4% for N3 detection, $\kappa = 0.55$ and Acc = 78.7% for NREM, $\kappa = 0.51$ and Acc = 88.5% for REM and $\kappa = 0.51$ and Acc = 85.7% for Wake detection.

Tataraidze *et al* (2016) presented a three-step classifier for sleep stages using ECG and RIP signals. At first a gradient boosted machine and a random forest classifier were used in parallel to process the features extracted from ECG and RIP, followed by a linear discriminant analysis (LDA) to predict class probabilities. Then a simple linear combination was used to make prediction. The algorithm was tested on a polysomnography dataset with 625 subjects with five-fold cross-validation. A value of $\kappa = 0.57$ and an accuracy of 71.4% in the four-class classification of Wake, REM, light and deep sleep was reported.

Yoon *et al* (2017) developed an automatic algorithm to determine REM sleep by ECG. After obtained 14 HRV parameters from ECG, a principal component analysis (PCA) was applied to extract the principal components where the first principal component was used to represent the major fluctuation reflected by the pattens of a sleep cycle. The algorithm was trained on a set of 26 subjects and evaluated on a validation set of 25 subjects. They reported a value of $\kappa = 0.63$ and 0.61, an accuracy of 87.1% and 87.0% for the training and validation sets respectively in the two-class classification of REM and NREM including N1, N2, N3 and wakefulness.

Wei *et al* (2018) described a neural network approach applied to the ECG to classify the sleep stages into one of three classes; Wake, REM and NREM. A total of 11 features were extracted from the raw ECG and were presented to a four-layer neural network. Cross-validation was used on the MIT-BIH Polysomnographic Database for validation. An accuracy of 77% and $\kappa = 0.56$ were reported for the three-class problem.

In the work presented in this article, the coherence and cross-spectrogram of the EDR and RSA signals were calculated on a 5 min epoch basis. Rather than selecting predetermined frequencies and optimizing amplitude or power thresholds, a convolutional neural network (CNN) was used to automatically identify the most relevant time-frequency cross spectral and coherence features associated with a given sleep stage. CNNs were originally developed to provide rotationally invariant spatial filters for images. Since the spectrogram is a matrix of numbers with spatiotemporal correlations that are similar to images, with specific subregions forming features indicative of specific physiological states, the CNN is a natural framework for identifying such features. A support vector machine (SVM) was then used to combine the output of the CNN with the other features derived from ECG, based upon heart rate variability, and signal quality indices (SQI) to produce a classification of sleep stage.

2. Methods

2.1. Dataset

For this work we used three databases: (1) the MIT-BIH Polysomnographic Database (SLPDB) (Goldberger et al 2000), (2) the Physionet/Computing in Cardiology Challenge 2018 training database (CinC2018tDB), (Ghassemi et al 2018) and (3) the Sleep Heart Health Study visit 1 (SHHSv1) database (Quan et al 1997, Redline et al 1998, Dean et al 2016, Zhang et al 2018). The SLPDB database includes 18 recordings from 16 subjects of multiple physiological signals during sleep, containing over 80 h of four-, six-, and seven-channel polysomnographic recordings, each with a single channel of ECG annotated beat-by-beat, and EEG and respiration signals annotated with respect to sleep stages and apnea. The CinC2018tDB includes 994 subjects who were monitored at Massachusetts General Hospital (MGH) sleep laboratories for the diagnosis of sleep disorders, containing over 7660 h of a variety of physiological signals recorded as they slept through the night including EEG, electrooculography (EOG), electromyography (EMG), ECG, and oxygen saturation (SaO2) together with arousal and sleep stages annotations. The SHHS database is a multi-center cohort study implemented by the National Heart, Lung, and Blood Institute to determine the cardiovascular and other consequences of sleepdisordered breathing. In all, 6441 men and women aged 40 years and older were enrolled between 1995 and 1998 to take part in SHHS Visit 1, including 5793 recordings (SHHSv1). During 2001–2003, a second polysomnogram (SHHSv2) was created using 3295 of the original participants. The entirety of the 5793 recordings in the SHHSv1 database was used without exclusion. Only the ECG signal was used in this study as an input and the expert sleep stages as targets/class labels.

The sleep stage annotations include six categories: wake, REM sleep, sleep stage 1, sleep stage 2, sleep stage 3 and undefined in the CinC2018tDB database; and wake, REM sleep, sleep stage 1, sleep stage 2, sleep stage 3 and sleep stage 4 in the SHHSv1 database. In this study, we combined sleep stage 1 and sleep stage 2, denoted NREM light sleep and combined sleep stage 3 and sleep stage 4, denoted NREM deep sleep. Data epochs were therefore classified into four categories, or 'states'; Wake, REM sleep, NREM light sleep and NREM deep sleep. The data were annotated in non-overlapping 30 s epochs by experts. Since 30 s is too short an interval to contain a sufficient number of heart beats for estimating autonomic activity, we used 5 min windows for an epoch, sliding the window forward every one minute in SLPDB and CinC2018tDB, but using non-overlapped window in SHHSv1 to keep the number of total epochs tractable. An epoch was selected only when the annotations within the 5 min window belonged to the same state. This prevented the inclusion of multiple sleep stages in a single epoch and reduced the effect of nonstationarities. A total of 2829 epochs were selected in SLPDB, 261946 epochs in CinC2018tDB, and 400547 epochs in SHHSv1 database, as shown in table 1.

Table 1. Distribution of epochs by state for each database used in this study	Table 1.	Distribution of e	pochs by state	for each database	used in this study
---	----------	-------------------	----------------	-------------------	--------------------

Database	Wake	REM	NREM light	NREM deep	Total
SLPDB	914 (32%)	185 (7%)	1585 (56%)	145 (5%)	2829
CinC2018tDB	34711 (13%)	37 593 (14%)	160748 (61%)	28894 (11%)	261 946
SHHSv1	130 688 (33%)	60234 (15%)	167 343 (42%)	42 282 (11%)	400 547

2.2. Preprocessing

The ECG signals were preprocessed by a finite impulse response (FIR) lowpass filter with a band stop at 22 Hz and a FIR highpass filter and with at corner frequency of 1.2 Hz. A state-of-the-art QRS detector (*jqrs*) was used for ECG R-peak detection (Johnson *et al* 2015). The detector consists of a window-based peak energy detector, which is extremely robust to noise. An ECG signal quality index (*bSQI*), which assesses the signal quality or noise levels of the signals, was extracted from the ECG and used to accept the epochs for further processing or reject the epochs if the signal quality of ECG was too low to be trusted (Li *et al* 2008). A sliding 10 s window was used, evaluated every second with a nine second overlap. If the value of the signal quality index was lower than a preset threshold, the epoch was rejected.

2.3. Cardiorespiratory coupling spectrogram calculation

After R-peak detection and derivation of the RR tachograms, RSA and EDR time series were extracted. Outliers due to false or missed R-peak detection were removed using a sliding window average filter with a length of 41 data points. Central points lying outside 20% of the window average were rejected. The resulting normal-to-normal (NN) interval series and its associated EDR signal were then linearly resampled at 4 Hz, so that the 5 min epoch contained 1200 samples. The cross-spectral power and coherence of these two signals were calculated over a 512-sample (128 s) window. Then the 512-sample sliding window was advanced every 40 samples (10 s) to obtain 18 cross-spectral estimates. By placing the cross-spectral curves in order of time, we obtained a CRC spectrogram of dimensions 50×18 , where the frequency range was from 0 Hz to 0.4 Hz (taken 50 points) and the time window was five minutes. An example of a CRC spectrogram for each sleep stage is shown in figure 1. The CRC spectrogram for each state, average over all epochs in SLPDB, is shown in figure 2.

2.4. Convolutional neural network implementation

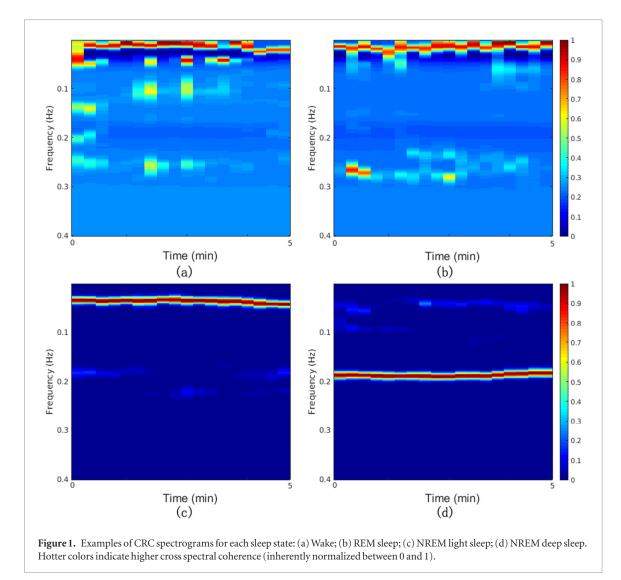
The CNN toolbox used in this study was written in Matlab R2016b (Vedaldi and Lenc 2015, www.vlfeat. org/matconvnet/). The CNN model used consisted of three convolutional layers, two max pooling layers (implemented after the first and the second convolutional layer), a rectified linear unit (ReLU) layer and finally a fully connected layer, as shown in figure 3. An $n \times m$ sized map is convolved with the input image at each convolutional layer, resulting in an output with $n - 1 \times m - 1$ reduction in size from the input. The 2 × 2 max pooling layer downsamples the input by a factor of two in both directions, dropping 75% of data size while retaining most discernible features for classification. The final layer of convolution computes the input into a single value, which after increasing nonlinear properties by the ReLU layer, is passed into the fully connected layer thereby producing the final resulting probabilities for each class. Figure 3 illustrates this architecture.

2.5. Additional features

In order to capture information not present in the cross spectral coherence, we also calculated several HRV metrics (Vest *et al* 2018). These included deceleration and acceleration capacity from phase-rectified signal averaging (PRSA, (Campana *et al* 2010)), sample entropy (Costa *et al* 2005), and other HRV metrics (standard deviation of NN intervals (SDNN) and the ratio of low frequency and high frequency spectral power (LF/HF-ratio)). We also included several novel indices including the ratio of the sum of the two maximal coherent cross-power peaks in the low-frequency band (0.01–0.1 Hz) to the sum of the two maximal peaks in the high-frequency band (0.1–0.4 Hz), the ratio of the energy between the low-frequency and high-frequency band, and the signal quality index.

2.6. Support vector machine

To combine the above features and produce a final sleep stage class probability, a SVM classifier was used (Chang and Lin 2011, www.csie.ntu.edu.tw/~cjlin/libsvm/). The SVM employed a Gaussian radial basis function kernel, defined by $K(x_n, x_m) = exp(\gamma ||x_n - x_m||^2)$, where γ controls the width of the Gaussian and plays a role in controlling the flexibility of the resulting classifier. x_n and x_m are two vectors expressed in the initial feature space. We used the LibSVM libraries, which decouples the multiclass classification problem to several two-class problems and a voting strategy is then used: each binary classification is considered to be a voting entity, where votes can be cast for all data samples. A sample is designated to be in a class with the maximum number of votes.



The probability outputs of CNN were fed into the SVM at its input, together with the individual HRV features extracted from the same 5 min ECG, as described in section 2.5.

2.7. K-fold cross-validation

The 16 subjects in SLPDB, and the recordings from CinC2018tDB and SHHSv1 were randomly allocated into ten subsets (folds, K = 10) of data respectively. Grouping was performed by subject number rather than by the total epochs, (i.e. stratified by subject) so that the data from one subject would not appear in both the training fold or the test fold. K - 1 folds of the dataset were used for training, after which the network was saved, it was tested on the remaining (validation) fold. This process was repeated *K* times with each of the *K* folds tested and the results were averaged or accumulated.

2.8. Evaluation method

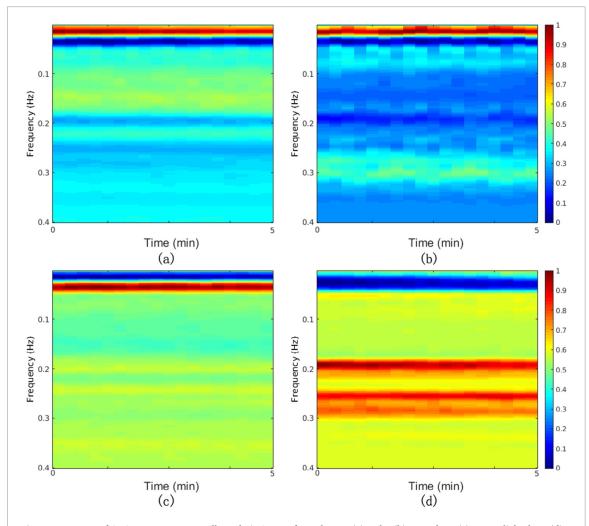
The classification accuracy (Acc) and Cohen's Kappa (κ) were used to evaluate the performance of the algorithm. The Acc is defined as follows:

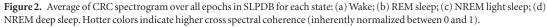
$$\operatorname{Acc} = \sum_{k=1}^{q} n_{kk}/N$$

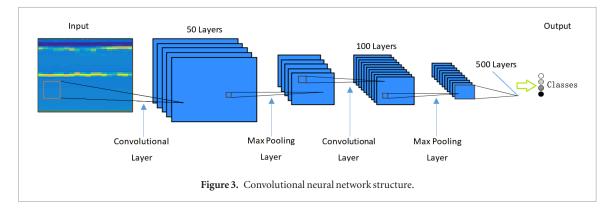
where q is the number of categories, N is the total number of epochs and n_{kk} is the number of correct classifications. Cohen's Kappa is defined as

$$\kappa = \frac{p_a - p_e}{1 - p_e}$$

where $p_a = \sum_{k=1}^{q} p_{kk}$, $p_e = \sum_{k=1}^{q} p_{k+}p_{+k}$, p_{kk} represents the percentage of epochs classified into category k by the algorithm and by the annotated label; p_{k+} and p_{+k} represent the percentage of epochs assigned to category k by the algorithm and annotated label respectively.







3. Results

Table 2 shows the performance of the ten-fold cross validation in SLPDB. The four classes, or states, are Wake, REM sleep, NREM light sleep and NREM deep sleep. The three classes are broken into two categories: (a) Wake, REM sleep and NREM sleep; and (b) Wake and REM combined, NREM light sleep, and NREM deep sleep. The two class problem combines Wake and REM sleep as one class and NREM sleep as the other. The average values are the average accuracy of the held-out fold in the ten validation runs. The accumulation accuracy and κ were obtained by accumulating the results from every validation fold.

An accuracy of 75.4% and a Cohen's kappa coefficient of 0.54 on out of sample validation in the classification of Wake, REM, light and deep sleep was obtained. For the three class problem an Acc = 81.6% and κ = 0.63 for the classification of Wake, REM sleep and NREM sleep and Acc = 85.1% and κ = 0.68 for the classification of NREM sleep versus REM/wakefulness was found. The confusion matrix are tabled in the appendix (tables A1–A4).

Table 2. Performance of ten-fold cross validation in SLPDB.

	Training folds			
	Acc average (%)	Acc average (%)	Acc accumulation (%)	κ
4 classes	86.9 ± 0.7	75.6 ± 9.0	75.4	0.54
3 classes(a)	92.8 ± 0.8	81.7 ± 7.5	81.6	0.63
3 classes(b)	91.5 ± 0.4	79.7 ± 10.1	79.8	0.61
2 classes	93.8 ± 0.4	85.0 ± 6.5	85.1	0.68

Table 3. Performance of ten-fold cross validation in CinC2018tDB.

	Training folds		Validation fold	
	Acc average (%)	Acc average (%)	Acc accumulation (%)	κ
4 classes	68.8 ± 0.2	65.6 ± 1.3	65.6	0.31
3 classes(a)	79.2 ± 0.1	76.5 ± 1.0	76.5	0.42
3 classes(b)	72.2 ± 0.1	68.2 ± 1.2	68.2	0.36
2 classes	81.3 ± 0.1	79.4 ± 0.9	79.4	0.48

Table 4.	Performance	of ten-fold	cross validation	in SHHSv1.
----------	-------------	-------------	------------------	------------

	Training folds			
	Acc average (%)	Acc average (%)	Acc accumulation (%)	κ
4 classes	67.0 ± 0.1	65.9 ± 0.7	65.9	0.47
3 classes(a)	76.3 ± 0.1	75.3 ± 0.5	75.3	0.57
3 classes(b)	72.3 ± 0.1	71.6 ± 0.4	71.6	0.49
2 classes	81.4 ± 0.1	80.8 ± 0.3	80.8	0.61

Table 3 shows the performance of the ten-fold cross validation in CinC2018tDB. An accuracy (Acc) of 65.6% and a Cohen's kappa coefficient of 0.31 on out of sample validation in the classification of Wake, REM, light and deep sleep was achieved. For the three class problem an Acc = 76.5% and κ = 0.42 for the classification of Wake, REM sleep and Acc = 79.4% and κ = 0.48 for the classification of NREM sleep versus REM/ wakefulness was accomplished.

Table 4 shows the performance of the ten-fold cross validation in SHHSv1. An accuracy (Acc) of 65.9% and a Cohen's kappa coefficient of 0.47 on out of sample validation in the classification of Wake, REM, light and deep sleep was achieved. For the three class problem an Acc = 75.3% and κ = 0.57 for the classification of Wake, REM sleep and NREM sleep and Acc = 80.8% and κ = 0.61 for the classification of NREM sleep versus REM/wakefulness was accomplished.

Figure 4 illustrates the output of our new approach to automated sleep structure identification for the two, three and four-class problem.

Table 5 shows the performance when different SQI thresholds were used to exclude noisy epochs in SLPDB.

4. Discussion and conclusions

In this article we have presented a new approach to ECG-based sleep stage classification. Our results provide the highest accuracy compared to the state of the art (Fonseca *et al* 2015), with a 6.4% increase in accuracy and 0.05 increase in Cohen's kappa for the four class problem, a 1.6% increase in accuracy and 0.07 increase in Cohen's kappa for the three class problem, and the highest reported two class results (see table 2). A comparison with the latest algorithms was shown in table 6.

Aside from the improved results over earlier studies, there are several features of our method that make it superior to previously reported best in class (Fonseca *et al* 2015). First, previous authors required the recording of a respiratory inductance plethysmography. This can be energy consuming, annoying for the user and require expert placement of electrodes. Respiratory signals in themselves are notoriously difficult signals to interpret and generalization to consumer use is probably impossible (and in all likelihood why no clinical grade consumer respiratory band devices have come to the market).

In this work, we used the cross-spectral power to measure the amplitudes coupling of EDR and RSA, and used coherence to reveal the phase relationship between these signals. It has been shown that although the amplitudes can be subject and pathology dependent, the phase changes with sleep stages is consistent across populations

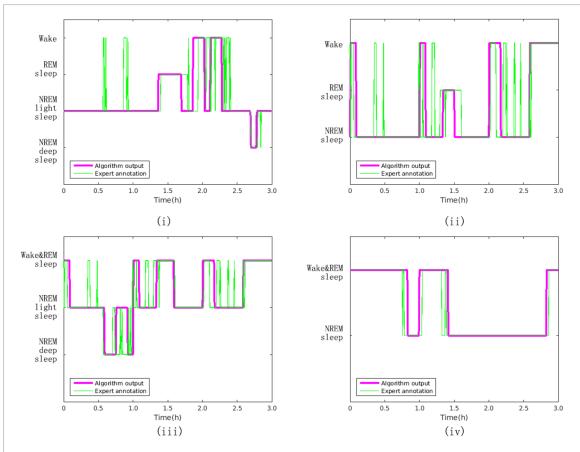


Figure 4. A comparison of expert-scored hypnograms and the output from the proposed approach for the (i) four class problem, (ii) three class problem (a), (iii) three class problem (b), and (iv) two class problem. Note that each epoch is five minutes for the algorithm output and 30 s for the expert annotation, so rapid changes between epochs (less than 5 min) are undetectable.

Table 5. Performance	(Acc accumulation %)	on validation fold by	y SQI-threshold selection in SLPDB.
----------------------	----------------------	-----------------------	-------------------------------------

SQI-threshold	_	0.80	0.90	0.95
Epochs	2829	2814	2774	2658
Mean SQI \pm SD	0.985 ± 0.07	0.988 ± 0.05	0.989 ± 0.04	0.992 ± 0.03
4 classes	75.4	76.3	76.3	75.9
3 classes(a)	81.6	82.5	82.6	82.0
3 classes(b)	79.8	80.2	80.0	79.9
2 classes	85.1	85.2	85.0	84.7

(Thomas *et al* 2005). The product of the cross-spectrogram and the coherence can then be used as a quantitative measure of the cardiopulmonary coupling. However, we note that there are other measures of cardio-respiratory coupling that may prove useful quantities to measure in this context. Bartsch *et al* (2012, 2014) demonstrated three independent forms of cardio-respiratory coupling, such as RSA, cardio-respiratory phase synchronization (CRPS) and time delay stability analysis (TDS) and the stratification patterns with transitions across sleep stages. Comparing with RSA, the sensitivity of CRPS to sleep-stage transitions is ten times higher. Specifically, the CRPS reflects the degree of clustering of heartbeats at specific relative phases within each breathing cycle, and the TDS quantifies the stability of the time-delay with which bursts in the activity in one system are consistently followed by corresponding bursts in the other system.

Recently research has addressed sleep staging from the perspective of network physiology (Bashan *et al* 2012, D'Agostino and Scala 2014, Ivanov and Bartsch 2014, Bartsch *et al* 2015, Ivanov *et al* 2016). Bashan *et al* (2012) developed a framework to probe interactions among diverse systems and identify physiological networks. They found that each physiological state was characterized by a specific network structure, demonstrating an interplay between network topology and physiological function. Bartsch *et al* (2015) systematically studied how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. The authors used TDS to identify and quantify networks of physiologic inter-

Work	Signals used	Database	Subjects (recordings)	Classes	k-fold	Acc	κ
Long <i>et al</i> (2014)	RIP	Part of SIESTA	48 out of 584	4 classes	10-fold	64.9	0.41
Fonseca et al (2015)	ECG + RIP	Part of SIESTA	48 out of 584	4 classes	10-fold	69	0.49
Tataraidze <i>et al</i> (2016)	ECG + RIP	Part of SHHSv1	625 out of 5793	4 classes	5-fold	71.4	0.57
Our work	ECG	SLPDB	16 (18)	4 classes	10-fold	75.4	0.54
Out work	ECG	SHHSv1	5793	4 classes	10-fold	65.9	0.47
Fonseca <i>et al</i> (2015)	ECG + RIP	Part of SIESTA	48 out of 584	3 classes	10-fold	80	0.56
Long <i>et al</i> (2014)	RIP	Part of SIESTA	48 out of 584	3 classes	10-fold	77.1	0.48
Wei et al (2018)	ECG	SLPDB	16 (18)	3 classes	10-fold ^a	77	0.56
Our work	ECG	SLPDB	16 (18)	3 classes	10-fold	81.6	0.63
Out work	ECG	SHHSv1	5793	3 classes	10-fold	75.3	0.57
Thomas <i>et al</i> (2005)	ECG	Private	35train + 35test + 15test	2 classes	_	_	0.439
Fonseca et al (2017)	ECG + RIP	Part of SIESTA + private	180 (342)	2 classes	10-fold	78.71	0.55
Yoon <i>et al</i> (2017)	ECG	Private	26train + 25test	2 classes	_	87.03	0.61
Our work	ECG	SLPDB	16 (18)	2 classes	10-fold	85.1	0.68
Out work	ECG	SHHSv1	5793	2 classes	10-fold	80.8	0.61

Table 6. A comparison with the latest sleep staging algorithms.

^a 10-fold by epochs, not by recordings.

actions from long-term continuous, multi-channel physiological recordings and found a sleep-stage stratification pattern for brain–brain, brain-organ and organ–organ networks. In this paper we studied the physiologic interactions among heart and respiration with cardiorespiratory coupling of EDR and RSA extracted from ECG without an explicit modelling of this system. In that sense it represents a non-parametric approach. The interactions of the cardiopulmonary system were converted to a CRC spectrogram and the different sleep stages of light sleep, deep sleep, REM sleep and wake exhibited characteristic differences in the CRC spectrogram which could then be classified by the proposed deep learning architecture.

We also note that with a cross spectral approach, the noise present during respiration is removed, since incoherent noise exhibits a very low amplitude or non-existent signal in our time-frequency plot. This lack of signal due to noise becomes a useful signal for us, and in fact including this in the CNN leads to higher accuracies/ κ . This indicates that certain sleep stages exhibit more noise than others, and this noise level can be learned, if it does not swamp the signal.

We also note that the use of a time-frequency approach allows us to identify relatively short periods of physiology (like sleep stages) and to capture nonstationary events. Since sleep stages are defined to be assessed on 30 s epochs, and indeed, events can happen on a shorter time-scale, a method that can spot these (such as arousals) is essential in sleep analysis. In this study we used a relatively long window of 5 min epoch to generate the CRC spectrogram for sleep staging analysis. To evaluate our algorithm on a 30 s basis, we slide the 5 min window forward every 30 s to match the annotation of the 30 s epoch centred on the 5 min window. In this way we were able to match the epochs generated through traditional sleep staging approaches. Of course, this leads to a slight low-pass filtering effect that may dampen out shot term sudden shifts since data from the surrounding epochs are used, but the evaluation of a 30 s epoch-by-epoch basis is still valid. The classification performance of the algorithm was tested by a 10-fold cross validation in the SLPDB. The results showed an Acc = 66.2% and $\kappa = 0.36$ on out of sample validation in the classification of Wake, REM, light and deep sleep, Acc = 73.6% and $\kappa = 0.44$ for the classification of Wake, REM sleep and NREM sleep and Acc = 76.1% and $\kappa = 0.47$ for the classification of NREM sleep versus REM/wakefulness. In the last decade or so there have been attempts to develop HRV metrics from shorter term windows, such as phase rectified signal averaging (Bauer et al 2006). Most recently, Hou et al (2016) presented a new approach on 30 s epochs during sleep. The authors constructed a complex network from short-term HRV based on a visibility graph algorithm and extracted four network measure parameters across sleep stages. However, these measures do not capture the interactions between respiration and heart rate, and so would not be useful in our analysis here.

Perhaps most importantly, we note that the use of a QRS detector in our work is important. Previous studies using ECG data have often used hand annotations of beat locations. As we have previously shown (Oster and Clifford 2015), the use of algorithms trained and tested on hand annotations significantly over-estimates the accuracy of the resultant algorithms and leads to a substandard approach in reality. For this reason, we have not included comparisons with other sleep staging algorithms based on ECG—it would be unfair to compare any technique which requires hand annotation of QRS complexes. In such scenarios, one might as well have recorded the EEG and had experts read the EEG. Since the accuracy of the EDR and RSA signals derived from ECG depend on the quality of the QRS detector, the accurate estimation of the HRV features and derivation of the CRC are naturally also a function of the quality of the ECG and the accuracy of the QRS detector. Poor QRS detection performance is therefore likely to result in poor sleep staging classification. To illustrate the effect of different QRS detectors on sleep staging from automated ECG analysis, we compared the results when using an open source QRS detector, wqrs (Zong et al 2003), which is sensitive to noise. The 10-fold cross validation approach results in the SLPDB resulted in an out of sample four-class Acc = 73.1% and κ = 0.51 (Wake, REM, NREM light sleep and NREM deep sleep), a three-class Acc = 77.7% and κ = 0.56 (Wake, REM and NREM sleep) and a two-class Acc = 81.6% and κ = 0.61 (NREM sleep versus REM/wakefulness). These results are a modest but important 2%–4% lower than the results using *jqrs*. However, we note that the CRC, which provides an estimate of the cardiopulmonary coupling, is in some sense robust to noise, since only coherent signals in both the respiration and heart rate will be detected. In some sense this has somewhat (although not entirely) mitigated the issue of noise. However, noisy segments of ECG are likely to be correlated to movements, which themselves are correlated with less deep sleep stages or wakefulness. This bias is likely to be learned by the deep learning architecture and therefore must be considered carefully in the context of the population on which the algorithm is trained. (This is of course true for all sleep staging approaches, regardless of which signals are used for sleep staging.) Therefore, using as accurate a beat detection algorithm as possible is still important.

Finally, we note that we have demonstrated robustness of the approach presented here across three databases with over ten times as many patients as any previous study. The use of an automated QRS detector made this approach possible.

There is one key limitation to our study in that we used relatively specific patient cohorts. Since abnormal conditions can reduce the inter-class agreement level of experts, then training becomes more difficult. Although this does not always directly impact on the eventual diagnosis, it can be significant for automated classification systems, which may disproportionately weight incorrectly labeled epochs during training. Inter-rater reliability/ agreement has been shown to vary enormously, with κ coefficient values ranging between 0.6 and 0.9 (Crowell *et al* 1997, 2002, Stepnowsky *et al* 2004, Ferri *et al* 2005, Rosa *et al* 2006, Saito *et al* 2006). Taking this into consideration, we can see that the κ values we obtain of 0.54–0.68 are as good as can be expected.

In general, in order to ascertain if the method described here provides enough information to be diagnostically useful for any given condition, the output from this method will have to be fed to another classifier (or expert). Sleep stages in themselves are rather uninformative, yet statistics derived from them are correlated with a range of conditions. For example, patients with major depressive disorder exhibit shortened latency to the onset of REM sleep (REM latency), an increased percentage of the night in REM sleep, a longer duration of the first REM period, and decreased amount of slow-wave sleep (Krystal 2012).

It may therefore be possible to identify a proxy for ECG-related REM-like sleep from our algorithm, and then identify thresholds for a given patient population, that although different to EEG-based REM thresholds, may never-the-less provide enough predictive power for patient screening or follow-up. On an individual basis, the ECG-based sleep structure estimate may be even more informative, allowing the user to identify treatmentrelated improvements on a long term basis, something which is not feasible with EEG-based systems, since the user rarely tolerates more than a few nights of such measurements and expert-application of the electrodes is often needed.

In conclusion, we have described an improved system for estimating sleep structure from a cardiovascular time series that is robust to noise, and in fact takes advantage of the noise in the ECG to aid classification accuracy. The system described outperforms current reported systems and in general it could apply to any pulsatile signal from which a beat onset and a respiratory modulation can be observed, such as the photoplethysmogram. Perhaps most notably, the results provided here do not require human annotation and can therefore be scaled for mass analysis without restriction beyond the modest storage and computational power requirements of earlier works.

Acknowledgments

The authors wish to acknowledge the National Institutes of Health (Grant # NIH 5R01HL136205), National Heart, Lung, and Blood Institute and Emory University for their financial support of this research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Institutes of Health, National Heart, Lung, and Blood Institute or Emory University. The Sleep Heart Health Database is supported by the NSRR R24 HL114473: NHLBI National Sleep Research Resource and grants (U01HL53916, U01HL53931, U01HL53934, U01HL53937, U01HL53938, U01HL53940, U01HL53941, U01HL64360) from the National Institutes of Health.

Appendix

Table A1	Confusion n	natrix of the	four class	problem o	f ten-fold	cross validation	n in SLPDB
Table AL.	Comusion	latin of the	. IOUI CIASS	problem 0	i tun-ioiu	cross vanuatio	I III OLI DD.

Annotation		Wake	REM	Light sleep	Deep sleep
Algorithm	Wake	703	73	140	27
	REM	21	15	30	0
	Light sleep	181	96	1398	101
	Deep sleep	9	1	17	17

Table A2. Confusion matrix of the two class problem of ten-fold cross validation in SLPDB.

Annotation		Wake & REM	NREM sleep
Algorithm	Wake & REM	857	181
	NREM sleep	242	1549

Table A3. Confusion matrix of the four class problem of ten-fold cross validation in SHHSv1.

Annotation		Wake	REM	Light sleep	Deep sleep
Algorithm	Wake	95 538	12891	16350	2198
	REM	6950	23 22 1	7700	356
	Light sleep	27 913	24 099	139875	34 395
	Deep sleep	287	23	3418	5333

Table A4. Confusion matrix of the two class problem of ten-fold cross validation in SHHSv1.

Annotation		Wake & REM	NREM sleep
Algorithm	Wake & REM	149783	35 832
	NREM sleep	41 1 39	173 793

ORCID iDs

Supreeth P Shashikumar D https://orcid.org/0000-0002-0348-4261

References

Aserinsky E and Kleitman N 1953 Regularly occurring periods of eye motility, and concomitant phenomena, during sleep *Science* **118** 273–4 Bartsch R P, Liu K K, Bashan A and Ivanov P C 2015 Network physiology: how organ systems dynamically interact *PLoS One* **10** e0142143 Bartsch R P, Liu K K, Ma Q D and Ivanov P C 2014 Three independent forms of cardio-respiratory coupling: transitions across sleep stages

Computing in Cardiology Conf. 41 781–4 (IEEE) (PMID: 25664348)

Bartsch R P, Schumann A Y, Kantelhardt J W, Penzel T and Ivanov P C 2012 Phase transitions in physiologic coupling *Proc. Natl Acad. Sci.* 109 10181–6

Bashan A, Bartsch R P, Kantelhardt J W, Havlin S and Ivanov P C 2012 Network physiology reveals relations between network topology and physiological function *Nat. Commun.* 3 702

Bauer A et al 2006 Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study Lancet 367 1674–81

Campana L, Owens R, Clifford G D, Pittman S D and Malhotra A 2010 Phase-rectified signal averaging as a sensitive index of autonomic changes with aging J. Appl. Physiol. 108 1668–73

Chang C and Lin C 2011 LIBSVM: a library for support vector machines ACM Trans. Intell. Syst. Technol. 2 27

Costa M, Goldberger A L and Peng C K 2005 Multiscale entropy analysis of biological signals *Phys. Rev.* E 71 021906

Crowell D H *et al* 1997 Infant polysomnography: reliability *Sleep* **20** 553–60

Crowell D H et al (CHIME Study Group) 2002 Infant polysomnography: reliability and validity of infant arousal assessment J. Clin. Neurophysiol. 19 469–83

D'Agostino G and Scala A 2014 Networks of Networks: the Last Frontier of Complexity vol 340 (Berlin: Springer)

Dean D A et al 2016 Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource Sleep 39 1151-64

Ferri R, Bruni O, Miano S, Smerieri A, Spruyt K and Terzano M G 2005 Inter-rater reliability of sleep cyclic alternating pattern (CAP) scoring and validation of a new computer-assisted CAP scoring method *Clin. Neurophysiol.* **116** 696–707

Fonseca P, den Teuling N, Long X and Aarts R M 2017 Cardiorespiratory sleep stage detection using conditional random fields *IEEE J*. Biomed. Health Inf. 21 956–66 Fonseca P, Long X, Radha M, Haakma R, Aarts R M and Rolink J 2015 Sleep stage classification with ECG and respiratory effort *Physiol.* Meas. 36 2027–40

Ghassemi M M, Moody B, Lehman L H, Song C, Li Q, Sun H, Westover M B and Clifford G D 2018 You snooze, you win: the PhysioNet/ Computing in Cardiology Challenge 2018 *Computing in Cardiology* vol **45** pp 1–4

Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C-K and Stanley H E 2000 PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals *Circulation* 101 e215–20

Herbst E, Metzler T J, Lenoci M, McCaslin S E, Inslicht S, Marmar C R and Neylan T C 2010 Adaptation effects to sleep studies in participants with and without chronic posttraumatic stress disorder *Psychophysiology* 47 1127–33

Hou F, Li F, Wang J and Yan F 2016 Visibility graph analysis of very short-term heart rate variability during sleep *Physica* A **458** 140–5 Iber C, Ancoli-Israel S, Chesson A and Quan S F 2007 *The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology*

and Technical Specifications (Westchester, IL: American Academy of Sleep Medicine) Ivanov P C and Bartsch R P 2014 Network physiology: mapping interactions between networks of physiologic networks Networks of

Networks: the Last Frontier of Complexity (Berlin: Springer) pp 203–22

Ivanov P C, Liu K K and Bartsch R P 2016 Focus on the emerging new fields of network physiology and network medicine New J. Phys. 18 100201

Johnson A E, Behar J, Andreotti F, Clifford G D and Oster J 2015 Multimodal heart beat detection using signal quality indices *Physiol. Meas.* **36** 1665–77

Krystal A D 2012 Psychiatric disorders and sleep Neurol. Clin. 30 1389-413

Li Q, Mark R G and Clifford G D 2008 Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter *Physiol. Meas.* **29** 15–32

Long X, Yang J, Weysen T, Haakma R, Foussier J, Fonseca P and Aarts R M 2014 Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging *Physiol. Meas.* **35** 2529–42

Loomis A L, Harvey E N and Hobart G 1936 Electrical potentials of the human brain J. Exp. Psychol. 19 249–79

Loomis A L, Harvey E N and Hobart G 1937 Cerebral states during sleep, as studied by human brain potentials *J. Exp. Psychol.* **21** 127–44 Martin J L and Hakim A D 2011 Wrist actigraphy *Chest* **139** 1514–27

Oster J and Clifford G D 2015 Impact of the presence of noise on RR interval-based atrial fibrillation detection *J. Electrocardiology* 48 947–51 Quan S F *et al* 1997 The sleep heart health study: design, rationale, and methods *Sleep* 20 1077–85

Rechtschaffen A and Kales A 1968 A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (Los Angeles, CA: UCLA Brain Information Service/Brain Research Institute)

Redline S, Sanders M H, Lind B K, Quan S F, Iber C, Gottlieb D J, Bonekat W H, Rapoport D M, Smith P L and Kiley J P 1998 Methods for obtaining and analyzing unattended polysomnography data for a multicenter study: Sleep Heart Health Research Group Sleep 21 759–67 (PMID: 11300121)

Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, Penzel T and Clifford G D 2014 A review of signals used in sleep analysis *Physiol. Meas.* **35** R1–57

Rosa A, Alves G R, Brito M, Lopes M C and Tufik S 2006 Visual and automatic cyclic alternating pattern (CAP) scoring: inter-rater reliability study *Arquivos Neuro-psiquiatria* 64 578–81

Saito Y, Sozu T, Hamada C and Yoshimura I 2006 Effective number of subjects and number of raters for inter-rater reliability studies *Stat. Med.* 25 1547–60

Stepnowsky C J, Berry C and Dimsdale J E 2004 The effect of measurement unreliability on sleep and respiratory variables *Sleep* 27 990–5 Tataraidze A, Korostovtseva L, Anishchenko L, Bochkarev M and Sviryaev Y 2016 Sleep architecture measurement based on

cardiorespiratory parameters *IEEE 38th Annual Int. Conf. of the Engineering in Medicine and Biology Society* (IEEE) pp 3478–81 Thomas R J, Mietus J E, Peng C K and Goldberger A L 2005 An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep *Sleep* 28 1151–61

Vedaldi A and Lenc K 2015 Matconvnet: convolutional neural networks for matlab *Proc. 23rd ACM Int. Conf. on Multimedia* pp 689–92 Vest A N, Da Poian G, Li Q, Liu C, Nemati S, Shah A J and Clifford G D 2018 An open source benchmarked toolbox for cardiovascular

waveform and interval analysis *Physiol. Meas.* **39** 105004

Wei R, Zhang X, Wang J and Dang X 2018 The research of sleep staging based on single-lead electrocardiogram and deep neural network *Biomed. Eng. Lett.* **8** 87–93

Wohlgemuth W K, Edinger J D, Fins A I and Sullivan R J 1999 How many nights are enough? The short-term stability of sleep parameters in elderly insomniacs and normal sleepers *Psychophysiology* **36** 233–44

Yoon H, Hwang S H, Choi J W, Lee Y J, Jeong D U and Park K S 2017 Rem sleep estimation based on autonomic dynamics using r–r intervals *Physiol. Meas.* 38 631–51

Zhang G Q, Cui L, Mueller R, Tao S, Kim M, Rueschman M, Mariani S, Mobley D and Redline S 2018 The National Sleep Research Resource: towards a sleep data commons *J. Am. Med. Inform. Assoc.* 25 1351–8

Zong W, Moody G B and Jiang D 2003 A robust open-source algorithm to detect onset and duration of QRS complexes *Comput. Cardiol.* **30** 737–40