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Abstract
Objective: Compressive sensing (CS) approaches to electrocardiogram (ECG) 
analysis provide efficient methods for real time encoding of cardiac activity. 
In doing so, it is important to assess the downstream effect of the compression 
on any signal processing and classification algorithms. CS is particularly 
suitable for low power wearable devices, thanks to its low-complex digital 
or hardware implementation that directly acquires a compressed version of 
the signal through random projections. In this work, we evaluate the impact 
of CS compression on atrial fibrillation (AF) detection accuracy. Approach: 
We compare schemes with data reconstruction based on wavelet and Gaussian 
models, followed by a P&T-based identification of beat-to-beat (RR) intervals 
on the MIT-BIH atrial fibrillation database. A state-of-the-art AF detector is 
applied to the RR time series and the accuracy of the AF detector is then 
evaluated under different levels of compression. We also consider a new 
beat detection procedure which operates directly in the compressed domain, 
avoiding costly signal reconstruction procedures. Main results: We demonstrate 
that for compression ratios up to 30% the AF detector applied to RR intervals 
derived from the compressed signal exhibits results comparable to those 
achieved when employing a standard QRS detector on the raw uncompressed 
signals, and exhibits only a 2% accuracy drop at a compression ratio of 60%. 
We also show that the Gaussian-based reconstruction approach is superior in 
terms of AF detection accuracy, with a negligible drop in performance at a 
compression ratio  ⩽75%, compared to a wavelet approach, which exhibited a 
significant drop in accuracy at a compression ratio  ⩾65%. Significance: The 
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results suggest that CS should be considered as a plausible methodology for 
both efficient real time ECG compression (at moderate compression rates) 
and for offline analysis (at high compression rates).

Keywords: atrial fibrillation, compressive sensing, ECG

(Some figures may appear in colour only in the online journal)

1. Introduction

Atrial fibrillation (AF) is the most common super-ventricular arrhythmia and consists of an 
abnormal electrical activity arising in the atrium (Camm et al 2010). Although it is not a lethal 
disease, it may lead to very disabling complications such as cardiac failure and atrial thrombo-
sis, with the subsequent risk of a stroke (Lip et al 2016). In order to diagnose the arrhythmia, 
it is important to document the heart rhythm at the time of symptoms (e.g. palpitations, syn-
cope, chest pain) with electrocardiography. In presence of AF, the electrocardiogram (ECG) is 
characterized by absent P-waves and irregularity of the ventricular response. The AF patient 
exhibits irregular rhythms at rates between 100 and 175 beats per minute, while a normal sinus 
rhythm has a resting heart rate between 60 and 100 beats per minute.

If a suspected arrhythmia cannot be detected and documented on a resting ECG dur-
ing medical examination, the cardiac rhythm may be recorded for 24 or 48 h using porta-
ble Holter monitoring devices. Despite the undeniable benefits of such medium term ECG 
monitoring, some arrhythmias might not be detected (because they are too infrequent or 
asymptomatic/‘silent’). The extension of ECG recording to 7 d or more, using wearable or 
implantable devices, can be necessary to detect critical episodes.

Wireless body sensor networks allow new scenarios for providing continuous monitoring of 
physiological signals using wearable devices (Alemdar and Ersoy 2010, Ko et al 2010). In par-
ticular, this technology enables long-term/real-time monitoring without restricting the person’s 
regular activities and reducing hospitalization costs. As data storage and transmission are major 
power consumers in embedded devices, data compression will result in improved transmission 
efficiency, reduced storage requirements, lower power consumption and longer battery life.

Lately, compressive sensing (CS) has demonstrated promising results for this scenario 
(Candès et al 2006a, Donoho 2006, Baraniuk 2007). CS is capable to achieve high compres-
sion ratios with low computational and memory requirements, making it suitable for use in 
embedded nodes of a wireless body sensor network (Mamaghanian et al 2011). CS theory 
states that signals which are sparse in some domain, i.e. which can be represented by few coef-
ficients, can be fully reconstructed using only a small number of linear measurements, taken 
at a rate that is much smaller than that required by Nyquist-rate sampling. When dealing with 
real-world ECG signals, the sparsity requirement is in general not fulfilled exactly. However, 
the reconstruction process enables the recovery of an approximation of the original signal 
from compressed measurements. In the reconstruction of physiological signals, it is essential 
to guarantee that all clinically relevant information for a given task is preserved, in order to 
prevent significant degradation in the performance of any standard (or novel) algorithm.

In this paper, we investigate the impact of CS on AF detection. After CS signal reconstruc-
tion, the ‘Pan and Tompkins’ (P&T) R-peak (or ‘QRS complex’) detection algorithm (Pan and 
Tompkins 1985) is applied, and the resulting RR interval series is analyzed to identify AF episodes. 
The reconstruction process might introduce distortion leading to inaccurate R-peak detection and 
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consequently to a degradation in the ability to identify AF. The aim of this work is to quantify the 
performance of an AF detection algorithm on reconstructed signals at different compression ratios.

Since the recovery process involves algorithms with a relatively high computational load, 
recovering the entire long term recording might require long time and considerable resources. 
Thus, we also evaluate the reliability of a QRS detector that works directly on the compressed 
measurements. Using this, it is possible to perform the AF detection without recovering the 
original ECG signal. For this scenario, we also assess the performance of the AF detector at 
different compression ratios.

The remainder of this paper is organized as follows. In section 2, we provide an overview 
of the experiments that we carry out in order to assess the effect of different compression 
ratios and reconstruction/detection methods on AF detection. Data from the MIT atrial fibril-
lation dataset (Tateno and Glass 2000) were used for reference. We also present a brief review 
of the CS paradigm, of heart beat detection on compressed measurements and of an AF detec-
tion method based on multi-feature extraction and a support vector machine (SVM). The 
evaluation metrics are also described in this section. Then, a series of experimental results are 
presented in section 3 and discussed in section 4. Finally, in section 5 we conclude this study.

2. Method

2.1. Method description

The work-flow adopted for the AF evaluation process is reported in figure 1. It clarifies the AF 
evaluation procedure to assess the effect of different CS compression ratios on AF detection.

First, we consider the uncompressed scenario, i.e. AF detection based on the QRS annota-
tions directly available in the MIT atrial fibrillation database (MIT AF DB) (Tateno and Glass 
2000), as well as AF detection based on the detected QRS locations from the uncompressed 
aw ECG signals using the P&T detection algorithm (Pan and Tompkins 1985). An AF detec-
tion method based on multi-feature extraction and the SVM detector, described in section 2.6, 
is applied to the RR interval series to perform AF detection.

For the assessment of AF accuracy on compressed ECG signals, we consider three differ-
ent scenarios, in addition to different values of compression ratios. The first two scenarios 
require the reconstruction of the ECG signals from compressed measurements as explained 
in section 2.4, where two different sparsifying bases are adopted. Then, R-peak detection is 
performed using the P&T algorithm on the reconstructed signals. The third scenario evaluated 
in this study is motivated by the desire to simplify the detection process after compression. 
In particular, this scenario does not require signal reconstruction and the R-peaks are directly 
detected using an algorithm that operates on the compressed ECG signals. The detector, based 
on matched filtering, is described in section 2.5, and is herein referred to as compressed sens-
ing matched filtering (CSMF). After extraction of the RR interval time series, the multi-fea-
ture SVM detector is also applied for AF detection.

Finally, in order to verify that clinically relevant information is preserved, AF detection 
accuracy is assessed in a range of compression ratios, i.e. 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 
85 and 90%. In addition, we also evaluated the accuracy of QRS detection in the three differ-
ent scenarios. In this way, we can verify the relation between a good R-peak detection and the 
ability of correctly classify an AF episode.
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2.2. Data

For the analysis in this article, ECG signals from the MIT atrial fibrillation dataset (Tateno and 
Glass 2000), freely accessible on PhysioNet (Goldberger et al 2000), are used. This database 
contains 25 ECG recordings with a duration of approximately 10 h each, sampled at 250 Hz, 
12 bit resolution, with accompanying expert beat annotations. Among the records, 23 records 
include raw two-channel ECG signals and only the first one of each recording is used in this 
study. For two recordings, i.e. records 00735 and 03665, the ECG signal is missing and rep-
resented only by the rhythm and QRS beat annotation files. They are therefore excluded by 
this study since it is not possible to apply the proposed method without the raw ECG signals. 
For each signal, QRS annotations, derived using an automated detector, are provided along 
with rhythm information manually annotated by experts. Four rhythm types are reported: 
AF (atrial fibrillation), AFL (atrial flutter), J (AV junctional rhythm), and N (used to indicate 
all other rhythms). In particular, this database includes 21 recordings with paroxysmal AF 
(episodes of AF for each subject varies from 2 to 39) and two recordings in persistent AF. 
Data profiles were detailed in table 1. The RR interval series corresponding to the latter three 
rhythm types (AFL, J and N) were merged as non-AF rhythms in this study, to create AF and 
non-AF rhythm types.

2.3. A compressive sensing overview

CS is a relatively new signal processing framework that enables the acquisition of a compressed 
version of sparse or compressible signals (Candès et al 2006a, Donoho 2006, Baraniuk 2007). 

Figure 1. General flowchart of the evaluation method employed in this work.
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The process is attractive for low complexity compression solutions, and in particular for low 
power sensing devices. In fact, it turns out that, since it simply calculates random compressive 
measurements, the sensor encoder does not require any particular assumption about the signal, 
besides sparsity, and is therefore universal. Moreover, measurements can be computed very 
efficiently by means of digital or analog schemes.

An N-dimensional signal vector is k- sparse if it has only k  <  N non-zero components. CS 
theory shows that it is possible to reconstruct a sparse signal x ∈ RN  from a small number of 
random projections

y = Φx, (1)

where y ∈ RM, M ∼ k < N , is the vector containing the compressed measurements, and 
Φ ∈ RM×N  is the projection matrix, usually called the sensing matrix.

In real world applications, we deal with nearly sparse signals and measurement noise, and 
the problem in equation (1) becomes

y = Φx+ n, (2)

where n is an additive term taking error into account.

Table 1. Profile of MIT-BIH AF database separated by the four different rhythm types.

Variable AF rhythm

Non-AF rhythm

N AFL J Total

Total no. 
of rhythm 
episodes

299 (48.0%) 292 (46.9%) 14 (2.2%) 18 (2.9%) 324 (52.0%)

Total no. 
of QRS 
annotations

521 415 (42.6%) 663 202 (54.2%) 117 10 (1.0%) 268 18 (2.2%) 701 730 (57.4%)

Total time 
length (hour)

93.5 (37.5%) 149.1 (59.8%) 1.4 (0.6%) 5.2 (2.1%) 155.7 (62.5%)

Min no. of 
QRS in each 
episode

3 5 9 2 —

Mean no. of 
QRS in each 
episode

1744 2271 836 1490 —

Max no. of 
QRS in each 
episode

618 91 368 34 6322 263 65 —

Min time in 
each episode 
(h)

0.0005 0.0012 0.0010 0.0004 —

Mean time 
in each 
episode (h)

0.31 0.51 0.10 0.29 —

Max time in 
each episode 
(h)

10.2 8.9 0.7 5.1 —
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The reconstruction of x from y is in general an ill-posed problem, since the system in 
equation (2) is underdetermined. Moreover, note that a non-sparse signal x can be typically 
written as

x = Ψs, (3)

with s sparse. In equation (3), Ψ may be a basis matrix, Ψ ∈ RN×N, or an over-complete 
dictionary, Ψ ∈ RP×N . In this last case, the dimension P is higher than that of x. By assum-
ing sparsity of the signal and some properties for matrix Φ (or ΦΨ in the more general case), 
reconstruction is possible.

In particular, to recover the signal from the measurements, one can intuitively search for 
the sparsest solution, i.e. the one with smallest support, and solve the following minimization 
problem

argmin
s

‖s‖0 subject to ‖y −ΦΨs‖2 � ε, (4)

where ‖ · ‖0 denotes the l0 pseudo-norm counting the number of non-zero elements in vector s 
and ε is a bound on the noise energy, i.e. ‖n‖2 � ε. The original signal x can be finally recov-
ered thanks to the relation in equation (3).

The properties that a sensing matrix should have in order to guarantee perfect recovery 
have been carefully addressed in the literature. We mention here the restricted isometry prop-
erty (RIP) (Candès 2008), which requires that any two distinct sparse vectors in the original 
space are mapped to the compressed domain approximately preserving their distance. The 
RIP ensures that a variety of practical algorithms guarantee near-optimal recovery of any 
sparse/compressible signal. Several methods have been proposed in order to solve the prob-
lem in equation (4) by convex relaxation, such as basis pursuit denoising (BPDN), where l0 is 
replaced by the l1 norm to make the problem tractable

argmin
s

‖s‖1 subject to ‖y −ΦΨs‖2 � ε, (5)

and by greedy algorithms such as matching pursuit and orthogonal matching pursuit. Another 
approach is to solve the recovery problem by replacing the l0 norm with a smooth approx-
imation of it. The resulting smoothed l0 norm (SL0) (Mohimani et al 2009) algorithm has a 
better performance than the greedy algorithms while requiring considerably less computation 
time than state-of-the-art l1 minimization solvers.

2.4. Setting the CS parameters

In our work, when signal compression is followed by reconstruction, CS is applied to non-
overlapping windows (blocks) of length N  =  256 samples, which corresponds to almost one 
second in the MIT AF DB ECG data. We chose N equal to a power of two to allow the use of 
a dyadic wavelet matrix Ψ as the sparsifying basis, as described below. Moreover, using win-
dows corresponding to approximately one second, makes the compression process suitable for 
low-delay real-time applications.

Each signal is compressed using a different random sensing matrix with i.i.d. entries drawn 
from the normal distribution, Φi,j, j ∈ N (0, 1/M). In a realistic implementation the resulting 
measurements y, yj =

∑N
i=1 φjixi must be represented with a finite number of bits. In this 

work we use a uniform scalar quantizer with B  =  12-bit of resolution, having L  =  212 quanti-
zation levels with equal width ∆ = r2−B , where r is the dynamic range of the measurements. 
Each value yi is rounded to the nearest multiple of ∆.

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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Signal reconstruction from CS measurements is performed using the SL0 algorithm 
(Mohimani et  al 2009). Since the reconstruction process is based on the signal sparsity 
assumption, we need to use a sparsifying transform Ψ. To this end, we employ the orthogonal 
Daubechies-4 wavelets (Db4), and a 5-level decomposition, which can effectively provide a 
sparse representations of the ECG, as suggested in Pinheiro et al (2010a).

We also compare the wavelet basis to the use of an over-complete Gaussian dictionary 
introduced in Da Poian et al (2014), which provides a sparse representation of ECG signals. 
Since it is based on the ECG morphology, it preserves the shape of QRS complexes as well as 
of P and T waves, increasing the quality of reconstructed signals.

In this study we also verify the performance of a beat detector that operates directly on the 
compressed sensed measurements and does not require signal reconstruction. In particular 
we use CSMF, a newly introduced QRS detection technique described in section 2.5. For this 
method, it is required that the signal block contains at least one heart beat in the majority of 
cases, so we set N  =  380, corresponding to about 1.5 s block duration. The sensing matrices 
are still drawn from an i.i.d. standard normal distribution, Φi,j, j ∈ N (0, 1/M).

2.5. CSMF-based QRS detection

Some signal processing problems do not require full signal reconstruction, and it is indeed 
possible to directly process compressive measurements and extract information. Recently, we 
proposed a new beat detector that works on compressed measurements (Da Poian et al 2017). 
It is based on template matching, or matched filtering, which has been used extensively in the 
uncompressed domain (see, for example, Hamilton and Tompkins (1986), Kaplan (1990) and 
Ruha et al (1997).) It calculates a template in the compressed domain (the compressed aver-
age QRS complex), and estimates the correlation between the compressed ECG signal and the 
compressed template.

Specifically, the procedure consists of three main steps, namely, (1) QRS template con-
struction, (2) correlation estimation using matched filtering on compressive measurements 
and (3) peak-finding based on adaptive thresholding in the correlation time series.

First, a short uncompressed or reconstructed signal segment is used to identify the QRS 
complexes and to generate the template. This ECG segment should be sufficiently long to 
ensure that it contains enough beats (e.g. 10 s). The P&T detector is then used to detect the 
beats and form the template ψ in the signal domain, before being mapped to the compressed 
domain.

It is possible to show that given the template ψ, the sensing matrix Φ and the measure-
ments y, the cross-correlation coefficients Rxψ(n) =

∑
τ xr(τ)ψ(τ − n), can be effectively 

estimated, under appropriate hypotheses, by

R̂xψ,n =
N
M
〈y, (ΦΦT)−1Φψn〉, (6)

where Φψn is the compressed template (after translation around the current sample n). In 
other words, the inner product corresponding to the calculation of Rxψ(n), for each n, can be 
approximated by the inner product (6) in the compressed domain.

The third and final stage implements QRS detection by comparing the absolute value 
of the correlation against an adaptive amplitude-dependent threshold, which depends on 
the root mean square (RMS) value of the cross-correlation in the current window (corre-
sponding to 1.5 s). After the RMS value is calculated, if it is larger than 25% of the maximum  

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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cross-correlation absolute value, the threshold is set to be 75% of the maximum value of the 
segment. If the RMS of the segment is less than 25% of its maximum value, the threshold is 
set to be 50% of the maximum value. The procedure is not very sensitive to small changes in 
these threshold values, which were derived by experiments. To avoid false detection, a refrac-
tory period (in which QRS detection is prohibited) of 200 ms is employed prior to repeating 
the process for the next cardiac cycle. Additionally, decision rules for the reduction of false 
positives are applied, to avoid detection of QRS complexes located in between two consecu-
tive blocks. In particular, when the time between the last detected peak in the previous block 
and the first detected beat in the current block is less then 200 ms, the middle point is taken 
as the R-peak location. Similarly, missed beats can occur between two consecutive blocks. 
In order to deal with this, when the RR interval measured across two blocks is greater than 
1.5 times the average RR interval computed on the previous 10 signal blocks, the threshold is 
adjusted to the half of its value and a new search is performed on a window of 100 ms centered 
between the two blocks.

2.6. AF detection using SVM

Generally, AF detectors are based on two approaches. One is based on atrial activity analysis 
and it focuses on the absence of P waves in the ECG signal. However, the P-wave has rela-
tively low amplitude, and the ambulatory ECG often exhibits movement-related noise resem-
bling the P-wave, which can lead to many false positives. The second approach is based on 
ventricular response analysis, and it is based on the predictability of the beat-to-beat intervals 
of the ventricular contractions. These RR intervals are derived from the most obvious large 
amplitude feature in the ECG, the R-peak. This approach is robust to artifacts, and is suitable 
for analysis of ECG recorded by wearable devices (Carrara et al 2015).

In this study, we used a state-of-the-art method developed in our earlier work for the ven-
tricular response-based AF detection (Li et al 2016), which was developed on the MIT AF DB 
described in section 2.2. The AF classification step is based on a SVM applied to 8 features 
that quantify irregularity in the RR interval time series. The SVM is trained by considering 
30 s long signal windows, manually marked as AF and non-AF rhythms (Li et al 2016).

2.7. Evaluation metrics

2.7.1. Compression. The compression ratio (CR) parameter takes into account the number of 
bits necessary to represent each sample both in the CS and original signal domains. Since in 
this work we use the same number of quantization bits in both domains, CR is computed as

CR =
N − M

N
, (7)

where M represents the number of samples in the CS domain and N is the number of samples 
in the original signal.

2.7.2. Evaluation of QRS detection accuracy. A QRS is correctly identified if the time dif-
ference between the annotated QRS in the reference and the detected R-peak is smaller than 
or equal to 50 ms, according to the recommendation of the American national standard for 
ambulatory ECG analyzers (ANSI/AAMI EC38-1994) (Association for the Advancement of 
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Medical Instrumentation 1994). We compute the sensitivity (SeQRS) and positive predictivity 
(+PQRS) for QRS detection as

SeQRS =
TPQRS

TPQRS + FNQRS
,

+PQRS =
TPQRS

TPQRS + FPQRS
,

where TPQRS (true positives) is the number of QRS complexes correctly located by the detec-
tor, FNQRS (false negative) is the number of missing true beats and FPQRS (false positive) 
represents the number of false beat detections.

Accurate R-peak detection is crucial for a reliable analysis of AF episodes. In order to test 
QRS detection accuracy, record 07126 was excluded since its reference QRS annotations are 
not consistent with the ECG signal.

2.7.3. Evaluation of AF detection accuracy. For this purpose, the RR series are classified into 
AF episodes and non-AF episodes. The classification is performed with the detector of sec-
tion 2.6, on the basis of 30 consecutive detected beat positions. In particular, the manually 
annotated AF and non-AF time intervals are divided into segments of 30 consecutive beats, 
possibly discarding the last segment if it contains less then 30 beats, and each of these seg-
ments is classified by the detector.

The accuracy of AF classification adopted in this work use the following metrics

Sensitivity : Se =
TP

TP + FN
,

Specificity : Sp =
TN

TN + FP
,

Accuracy : Acc =
TP + TN

TP + FP + TN + FN
,

Positive predictivity value : PPV =
TP

TP + FP
,

Negative predictivity value : NPV =
TN

TN + FN
,

Youden index : J = Se + Sp − 1,

where TP, FN, FP and TN denote the true positive, false negative, false positive and true nega-
tive detections, respectively. All the measures were computed on all the RR interval series 
within the dataset, including noisy segments to represent a real world scenario.

3. Results

3.1. QRS detection performance

Figures 2(a)–(c) show TPQRS, FNQRS and FPQRS for QRS detection using the considered three 
approaches, namely the CSMF R-peak detector in the compressed domain, the P&T detector 
after signal reconstruction using the wavelet basis (WT) and the Gaussian dictionary (GD). 
Figure 2(d) shows the total number of detected QRS, i.e. the sum of TPQRS and FPQRS as a 
function of the compression ratio.

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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As a reference for the performance of detection in compressed/reconstructed signals, we 
applied the P&T QRS detector (Pan and Tompkins 1985) on the raw original ECG signals, 
obtaining SeQRS = 96.38%, +PQRS = 90.38%.

Figure 2. Numbers of (a) TPQRS, (b) FNQRS and (c) FPQRS. (d) Total number of the 
detected QRS (TPQRS+FPQRS) varying the compression ratio for the CSMF detection or 
Pan and Tompkins (P&T) detection after reconstruction using wavelet transform (WT) 
and Gaussian dictionary (GD).

Figure 3. QRS detection sensitivity versus CR.

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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Figures 3 and 4 illustrate the results of QRS detection sensitivity (SeQRS) and positive pre-
dictivity (+PQRS) as a function of the compression ratio. At low CR levels (CR  <  60%), QRS 
detection using the three CS approaches gives similar results. For CR  =  10%, the CSMF method 
results are SeQRS  =  96.61% and  +PQRS = 97.06%. The P&T method run on the reconstructed 

Figure 4. QRS detection positive predictivity versus CR.

Figure 5. (a) Original ECG signal (first 10 s of record 05121) and reference QRS 
annotations. (b) Signal recovered at 75% compression using Gaussian dictionary 
and QRS positions detected using the P&T algorithm. (c) Signal recovered at 75% 
compression using wavelet transform (WT) and QRS positions detected using the P&T 
algorithm.

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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ECG signals using the wavelet basis results in SeQRS = 97.01% and  +PQRS = 97.54%. The 
P&T method run on the reconstructed ECG signals using the Gaussian dictionary results in 
SeQRS = 96.98% and  +PQRS = 97.48%. These results are slightly higher than those obtained 
with P&T-based QRS detection on the raw ECG signals (see section  2.7.2), and can be 
explained by the filtering properties of the CS approach at low CR rates.

At CR levels higher than about 60–70%, the QRS detection accuracy of all three CS 
approaches declines rapidly. It is worth noting the difference between the wavelet basis recov-
ery and Gaussian dictionary recovery. Figure  2(d) clearly shows that recovery performed 
using the wavelet basis leads to many missed QRS detections at high CR levels. Thus, as 
we can see in figures 3 and 4, detection on signals reconstructed using the wavelet basis has 

Figure 6. Total number of (a) AF episodes (TP  +  FN ), (b) non-AF episodes (TN  +  FP). 
Number of (c) true positive (TP), (d) false positive (FP), (e) false negative (FN) and (f ) 
true negative (TN) detections for the SVM AF classifier operating on QRS detected 
using CSMF or P&T detection after reconstruction using wavelet transform (WT) 
and Gaussian dictionary (GD). The reference numbers (dash-dot line) refer to the AF 
episodes and non-AF episodes found from the reference QRS.

G Da Poian et alPhysiol. Meas. 38 (2017) 1405
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lower sensitivity and positive predictivity values than on signals recovered using the Gaussian 
dictionary. Indeed, the reconstruction process using the wavelet basis typically introduces 
artifacts that lead to incorrect QRS detections.

At the same CR level, the reconstructed ECG signals using the Gaussian dictionary, based 
on a model of QRS waveforms, exhibit less artifacts, leading to better accuracy for QRS 
detection. This can be seen in figure 5, which shows an example from record 05121. In par-
ticular, figure 5(a) shows the raw ECG signal and the corresponding annotated QRS com-
plexes marked with triangles. Figures 5(b) and (c) depict the reconstructed ECG signals using 
the Gaussian dictionary and the wavelet basis, respectively, at CR  =  75%. Triangles in (b) 
and (c) represent the detected QRS using the P&T method on the reconstructed signals. It 
can be seen that the artifacts present in the reconstructed ECG signal using the wavelet basis 
cause wrong beat detection. Obviously, if one or more QRS complexes are missed or wrongly 
detected, the resulting RR interval series and consequently AF classification performance, are 
compromised. In addition, for high CR levels, the proposed CSMF method gives higher sensi-
tivity, but lower positive predictivity for QRS detection, than the method based on the wavelet 
basis. We note that reconstruction using the Gaussian dictionary gives the best results. We will 
analyze the complexity of the proposed approaches in section 3.3.

3.2. AF detection performance

As mentioned, the detector operates on segments of 30 consecutive beats within the manually 
annotated AF and non-AF time intervals. The reference total number of AF segments is given 
by the number of segments belonging to AF time intervals and obtained from the annotated 
QRS complexes. The reference total number of non-AF segments is computed similarly. It 
is important to note that, due to compression and errors in QRS detection, the total number 
of segments in AF time intervals for a given technique, computed as the sum of TP and FN 
classification decisions, is in general different from the reference value. The same happens for 
non-AF segments, defined as the sum of TN and FP after classification. Of course, if many 
QRS complexes are missed, we expect a large difference with respect to the reference values.

0 2 4 6 8 10 12 14 16 18 20 22
-0.5

0
0.5

Time [s]
0 2 4 6 8 10 12 14 16 18 20 22

(e) CSMF      

(d) WT + P&T

(c) GD + P&T

(b) Reference

AF

(a) ECG

Figure 7. From top to bottom: (a) ECG signal (04746) at time 1:13:10 and  
(b) corresponding RR series of a non AF and AF episodes from the annotations file. The 
RR series detected after signal reconstruction using (c) Gaussian dictionary (GD) and 
(d) wavelet transform (WT). (e) RR series from the compressed beat detector (CSMF).
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As a reference for the performance of AF detection in compressed/reconstructed signals, 
we perform classification based on the reference QRS positions provided in the dataset or 
detected by P&T on the raw original ECG signals. In these cases we obtain an accuracy 
Acc  =  96.53% on provided QRS annotations and 95.28% using QRS detected with the P&T 
detector.

Figures 6(a) and (b) compare the total number of AF and non-AF segments for a given 
technique with the reference values. It can be seen that reconstruction with the wavelet basis 
exhibits a significant drop at compression ratios higher than 60%. This is consistent with 
figure 2, where it can be seen that at high CR, the method based on signal recovery using WT 
missed many QRS complexes, whereas the GD and the CSMF methods could detect almost as 
many beats as given by the reference annotated QRS complexes.

Figures 6(c)–(f) show TP, FN, FP and TN values for AF detection as a function of CR, for 
the three CS scenarios considered in this study.

The number of correctly classified AF segments, represented by the TP value, is reported 
in figure 6(c). It can be seen that TP starts to rapidly drop at CR  >60% when AF detection 
is performed after reconstruction with the wavelet basis. Instead, when reconstruction is per-
formed using the Gaussian dictionary, TP starts to significantly decrease at CR > 75%. The 
CSMF technique, applied directly in the compressed domain, results in a relatively small 
performance loss up to CR  =  50% with a rapid decline at higher compression.

Figures 6(d)–(f) similarly show that for CR up to 60% the techniques have similar per-
formance, while the WT and CSMF techniques degrade at higher compression. The method 
based on reconstruction with the Gaussian dictionary exhibits very good performance for CR 
up to about 75%. Note that the SVM detector tends to classify a segment with an RR pattern 
not consistent with AF as a non-AF segment, which is a safe harbour approach. Indeed, if a 
patient needs treatment, many AF segments would be present, and it is likely that eventually a 
positive trigger would be seen. This explains the larger FN values at high compression ratios.

An example of detected QRS complexes by the three CS techniques for non-AF and AF 
episodes is reported in figure 7. The figure shows a sample of record 04746, and, in particular, 
the AF episode occurs at time 1:13:10. The detected RR series after compression (CR  =  80%) 
and reconstruction shows that WT leads to inaccurate QRS locations. In this example, the 
use of the Gaussian dictionary enables a better QRS detection that allows to correctly clas-
sify the normal rhythm and the AF episode. This also applies for CSMF detection on the CS 
measurements.

Table 2 summarizes the results for the SVM-based AF detector on the MIT-BIH atrial 
fibrillation database in a variety of scenarios, as described in section 2. In particular, the sec-
ond columns specifies the technique used for the evaluation. ‘Reference QRS’ refers to the 
application of the SVM-based AF detector on annotated QRS complexes, while ‘Raw signals’ 
refers to classification after QRS detection using the P&T procedure on uncompressed signals, 
as specified in the fourth column. It is clear that the corresponding performance values help 
to quantify the performance of the CS-based techniques. Note that the CSMF method does 
not require signal reconstruction, as specified in the third column, where the reconstruction 
technique is indicated.

It can be seen from table 2 that the application of the AF detector on annotated QRS com-
plexes (‘Reference QRS’) results in a very high Sp value equal to 99.14% and a relative low 
Se value equal to 93.22%. As mentioned before, this can be justified by the fact that the clas-
sifier tends to mark as non-AF those segments which do not exhibit a typical AF pattern. As 
expected, classification after QRS detection by employing the P&T algorithm on the uncom-
pressed ECG signals also results in a high Sp of 97.68% and a relative low Se of 92.97%.
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An overall picture of the accuracy of AF detection performance as a function of CR is given 
in figure 8. It can be seen from the figure and from table 2 that, for CR values up to about 
50%, the AF detector applied to QRS complexes derived from the compressed signals, using 
the CS techniques described in this work, gives results comparable to those achieved when 
employing a standard QRS detector on the raw uncompressed signals. At a compression ratio 
equal to 60%, we have less than 1% loss for the WT and GD based techniques, and about a 
5% loss for CSMF. At a compression ratio equal to 75%. the GD method guarantees a small 
performance loss of about 1.2%.

Figure 8. Output AF accuracy versus CR.

Figure 9. Average time required to process 1 s of signal. The error bar gives the standard 
deviation over multiple runs. For the CSMF the time is related to the QRS detection 
and for the other two methods the execution time includes both the time require to 
reconstruct the signal and perform the QRS detection using the P&T approach.
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3.3. Execution time

In order to quantify the possible benefits of the new CSMF method against the methods based 
on CS reconstruction followed by P&T QRS detection, we compare the time required by 
the different schemes to process 1 s long ECG signal. For the CSMF method, the process-
ing time is merely the time required for QRS detection on the compressed measurements, 
via matched filter computation in the compressed domain. In the other cases, the total time 
required by the CS reconstruction procedure followed by P&T QRS detection is taken into 
account. Results are reported in figure 9. Time measurement is based on implementation using 
MATLAB (R2016b) on a desktop computer with Intel(R) Core (TM) 2 Duo CPU 7400 @ 2.80 
GHz, and 4GB of RAM.

The CSMF outperformed the other two methods in terms of execution time. Indeed, to pro-
cess 1 s ECG signal, the CSFM takes 0.0028 s at CR  =  20%, and 0.0018 s for CR  =  90%. This 
means that to process a 1 hour long signal, the CSMF method only takes 10 s at CR  =  20%.

For the other two CS techniques that require reconstruction and P&T detection, the execu-
tion time at CR  =  20% increases to 0.01 s and 0.1 s for the WT and GD methods, respectively. 
For CR  =  90% the execution time becomes 0.0055 s and 0.01 s for the WT and GD methods, 
respectively. Thus, to process a 1 h long ECG signal at CR  =  20%, the total time required 
is about 36 s with the WT method and it further increases to about 6 minutes using the GD 
method. Moreover, it should be noted that QRS detection with the P&T method is applied 
after reconstruction of the whole signal, while the CSMF is applied to 1.5 s sliding windows, 
which allows real-time processing with a small delay.

4. Discussion

To detect AF automatically and reliably is a challenging task even on raw uncompressed 
ECG data. In our study, we investigated the effect of CS-based ECG compression on the acc-
uracy of an AF detector applied to the processed data, for a wide range of compression ratios 
between 10% and 90%. To this end, two different sparsifying representations, in combination 
with the SL0 algorithm, were used to reconstruct the ECG signals from the CS measure-
ments. Afterwards, the P&T algorithm was employed for QRS detection. Furthermore, we 
also describe a newly introduced beat detector that allows direct processing of the compressed 
measurements, without any signal reconstruction. Finally, the RR interval series obtained 
from the three different CS scenarios at different CR levels was used to perform AF detection 
using a previously reported state-of-the-art SVM-based model.

All three CS scenarios, i.e. reconstruction with the wavelet basis or the Gaussian diction-
ary followed by a standard (P&T detector, and the direct detection on compressed measure-
ments (CSMF), exhibit similar characteristics for what concerns the AF classification quality 
metrics. In particular, at low CR levels, the AF detection results are comparable with those 
obtained on raw uncompressed ECG signals. However, for high CR values, the AF detection 
accuracy for the three methods decreases, as can be seen in figure 8. The results reveal that AF 
detection based on the new CSMF method has an acceptable performance loss, with respect 
to the techniques that require signal reconstruction, up to compression ratios of about 60%. 
This technique performs better than the WT-based method for CR higher than 70%. Indeed, 
CSMF reaches an accuracy equal to 92.55% at a 50% compression ratio, while at CR  =  90%, 
its accuracy decreases to 65.37%. AF detection after reconstruction using WT allows slightly 
better results up to CR= 70%. However, its performance rapidly decreases at higher CR levels 
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and reaches an accuracy equal to 54.29% at CR  =  90%. The best performance is achieved by 
the method with signal reconstruction using the Gaussian dictionary, which allows to reach 
accuracies 94.05% and 77.66% at CR  =  75% and CR  =  90%, respectively.

This study also highlights some drawbacks related to each of the three CS scenarios. One 
major drawback of the CSMF method is the quickly increasing number of false negative AF 
detections FN when CR> 50%. This is due to the SVM-detector tendency to favour non-AF 
classifications. The WT method has a reconstruction quality that decreases rapidly at high 
compression ratios, thus compromising classification quality. Overall, it appears that using the 
Gaussian dictionary for signal reconstruction enables a good AF detection up to a CR level of 
75–80%, at the expense of increased reconstruction complexity.

The democracy property of compressive sensing consists in the fact that each measurement 
carries the same amount of information. Thus, the reconstruction quality depends only on 
how many measurements are received and not on the particular received subset. This allows 
to modulate the compression ratio by simply discarding or retaining some measurements. 
Considering the trade-off between AF classification accuracy, execution time, and compres-
sion, one could envision a two-stage processing system where the CSMF method is employed 
in the sensor for mild compression ratios up to CR  =  60%. The system then switches to a 
higher compression, when transmission or recording is needed after AF episodes are detected, 
in view of reconstruction with GD followed by P&T detection. The switch simply consists 
in transmitting or recording fewer measurements. In a concrete scheme, one could acquire a 
compressed version of the signal using the analog CS implementation (Gangopadhyay et al 
2014, Bellasi and Benini 2015) with a low CR, e.g. 50%, and use CSMF for AF detection. 
Then, the CR can be increased (up to 80%) by keeping a subset of the measurements in order 
to save/transmit a lower amount of data, still allowing accurate AF classification when the 
reconstruction is performed using the GD method.

As one could expect, there is a relationship between the AF detection accuracy and QRS 
detection accuracy. In particular SeQRS starts to rapidly decline for CR  >  60%, similarly to 
what happens for the AF detection accuracy, when reconstruction using the WT and CSMF 
methods are used. Furthermore, reconstruction using the Gaussian dictionary allows to obtain 
similar results at a higher CR  =  75%.

Many studies related to CS-based ECG compression limited their assessment to the 
reconstruction quality, without evaluating the actual impact that signal reconstruction has on 
preserving relevant clinical information. In this study, we show that CS can be successfully 
employed as a compression technique for ECG signals when the final goal is to perform AF 
detection. As for reconstruction quality, we also show that the reliability of detected QRS 
complexes significantly depends on the sparsifying basis adopted for reconstruction.

5. Conclusions

The results of this study show that AF classification performed after CS-based compression 
allows us to correctly detect AF episodes when the compression ratio is lower than 60% or 
75%, depending on the reconstruction/detection method adopted. In particular, we found that 
acceptable results are obtained for compression ratios up to 60% when AF classification is 
performed on signal reconstructed using wavelets as the sparsifying basis, or when the CSMF 
method is used. However, when a specifically designed sparsifying dictionary is used during 
signal reconstruction, good results are obtained for CR values as high as 75%. These findings 
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have positive implications concerning the acquisition and compression of ECG signals for 
clinical purposes using low-power wearable devices. Moreover, the possibility to correctly 
identify an AF episode directly on the compressed measurements represents a good oppor-
tunity for future long-term monitoring applications that need to process the data on energy-
constrained devices.

ORCID

Giulia Da Poian  https://orcid.org/0000-0002-8960-1077
Chengyu Liu  https://orcid.org/0000-0003-1965-3020

References

Alemdar  H and Ersoy  C 2010 Wireless sensor networks for healthcare: a survey Comput. Netw. 
54 2688–710

Association for the Advancement of Medical Instrumentation 1994 American National Standard for 
Ambulatory Electrocardiographs, publication ANSI/AAMIEC38

Baraniuk R G 2007 Compressive sensing IEEE Signal Process. Mag. 24 118–21
Bellasi D E and Benini L 2015 Energy-efficiency analysis of analog and digital compressive sensing in 

wireless sensors IEEE Trans. Circuits Syst. I 62 2718–29
Camm  A  J et  al 2010 Guidelines for the management of atrial fibrillation: the task force for the 

management of atrial fibrillation of the European Society of Cardiology (ESC) Eur. Heart J. 
31 2369–429

Candès E J 2008 The restricted isometry property and its implications for compressed sensing C. R. 
Math. 346 589–92

Candès E J, Romberg J and Tao T 2006a Robust uncertainty principles: exact signal reconstruction from 
highly incomplete frequency information IEEE Trans. Inf. Theory 52 489–509

Carrara M, Carozzi L, Moss T J, de Pasquale M, Cerutti S, Ferrario M, Lake D E and Moorman J R 2015 
Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm 
with frequent ectopy Physiol. Meas. 36 1873

Da Poian G, Bernardini R and Rinaldo R 2014 Gaussian dictionary for compressive sensing of the ECG 
signal Proc. IEEE Workshop on Biometric Measurements and Systems for Security and Medical 
Applications (IEEE) pp 80–5

Da Poian G, Bernardini R, Rinaldo R and Clifford G D 2017 Matched filtering for heart rate estimation 
on compressive sensing ECG measurements IEEE Trans. Biomed. Eng. submitted

Donoho D L 2006 Compressed sensing IEEE Trans. Inf. Theory 52 1289–306
Gangopadhyay D, Allstot E G, Dixon A M, Natarajan K, Gupta S and Allstot D J 2014 Compressed 

sensing analog front-end for bio-sensor applications IEEE J. Solid State Circuits 49 426–38
Goldberger A L, Amaral L A, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, 

Peng C K and Stanley H E 2000 Physiobank, physiotoolkit, and physionet components of a new 
research resource for complex physiologic signals Circulation 101 e215–20

Hamilton P S and Tompkins W J 1986 Quantitative investigation of QRS detection rules using the MIT/
BIH arrhythmia database IEEE Trans. Biomed. Eng. 12 1157–65

Kaplan D T 1990 Simultaneous QRS detection and feature extraction using simple matched filter basis 
functions Computers Cardiology, Proc. (IEEE) pp 503–6

Ko J, Lu C, Srivastava M B, Stankovic J A, Terzis A and Welsh M 2010 Wireless sensor networks for 
healthcare Proc. IEEE 98 1947–60

Kohler B-U, Hennig C and Orglmeister R 2002 The principles of software QRS detection IEEE Eng. 
Med. Biol. Mag. 21 42–57

Li Q, Liu C, Oster J and Clifford G D 2016 Signal processing and feature selection preprocessing for 
classification in noisy healthcare data Machine Learning for Healthcare Technologies ch 3, pp 
33–58

Lip G Y H et al 2016 Atrial fibrillation Nat. Rev. Disease Primers 2 16016

G Da Poian et alPhysiol. Meas. 38 (2017) 1405

https://orcid.org/0000-0002-8960-1077
https://orcid.org/0000-0002-8960-1077
https://orcid.org/0000-0003-1965-3020
https://orcid.org/0000-0003-1965-3020
https://doi.org/10.1016/j.comnet.2010.05.003
https://doi.org/10.1016/j.comnet.2010.05.003
https://doi.org/10.1016/j.comnet.2010.05.003
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/TCSI.2015.2477579
https://doi.org/10.1109/TCSI.2015.2477579
https://doi.org/10.1109/TCSI.2015.2477579
https://doi.org/10.1093/eurheartj/ehq278
https://doi.org/10.1093/eurheartj/ehq278
https://doi.org/10.1093/eurheartj/ehq278
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1088/0967-3334/36/9/1873
https://doi.org/10.1088/0967-3334/36/9/1873
https://doi.org/10.1109/BIOMS.2014.6951540
https://doi.org/10.1109/BIOMS.2014.6951540
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/JSSC.2013.2284673
https://doi.org/10.1109/JSSC.2013.2284673
https://doi.org/10.1109/JSSC.2013.2284673
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1109/TBME.1986.325695
https://doi.org/10.1109/TBME.1986.325695
https://doi.org/10.1109/TBME.1986.325695
https://doi.org/10.1109/CIC.1990.144266
https://doi.org/10.1109/CIC.1990.144266
https://doi.org/10.1109/JPROC.2010.2065210
https://doi.org/10.1109/JPROC.2010.2065210
https://doi.org/10.1109/JPROC.2010.2065210
https://doi.org/10.1109/51.993193
https://doi.org/10.1109/51.993193
https://doi.org/10.1109/51.993193
https://doi.org/10.1049/PBHE002E
https://doi.org/10.1049/PBHE002E
https://doi.org/10.1038/nrdp.2016.16
https://doi.org/10.1038/nrdp.2016.16


1425

Liu C, Li K, Zhao L, Liu F, Zheng D, Liu C and Liu S 2013 Analysis of heart rate variability using fuzzy 
measure entropy Comput. Biol. Med. 43 100–8

Mamaghanian H, Khaled N, Atienza D and Vandergheynst P 2011 Compressed sensing for real-time 
energy-efficient ECG compression on wireless body sensor nodes IEEE Trans. Biomed. Eng. 
58 2456–66

Mohimani H, Babaie-Zadeh M and Jutten C 2009 A fast approach for overcomplete sparse decomposition 
based on smoothed norm IEEE Trans. Signal Process. 57 289–301

Pan J and Tompkins W J 1985 A real-time QRS detection algorithm IEEE Trans. Biomed. Eng. 32 230–6
Pinheiro  E  C, Postolache  O  A and Girao  P  S 2010a Implementation of compressed sensing in 

telecardiology sensor networks Int. J. Telemed. Appl. 2010 7
Ruha A, Sallinen S and Nissila S 1997 A real-time microprocessor QRS detector system with a 1 ms 

timing accuracy for the measurement of ambulatory HRV IEEE Trans. Biomed. Eng. 44 159–67
Tateno K and Glass L 2000 A method for detection of atrial fibrillation using RR intervals Computers in 

Cardiology (IEEE) pp 391–4

G Da Poian et alPhysiol. Meas. 38 (2017) 1405

https://doi.org/10.1016/j.compbiomed.2012.11.005
https://doi.org/10.1016/j.compbiomed.2012.11.005
https://doi.org/10.1016/j.compbiomed.2012.11.005
https://doi.org/10.1109/TBME.2011.2156795
https://doi.org/10.1109/TBME.2011.2156795
https://doi.org/10.1109/TBME.2011.2156795
https://doi.org/10.1109/TSP.2008.2007606
https://doi.org/10.1109/TSP.2008.2007606
https://doi.org/10.1109/TSP.2008.2007606
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1155/2010/127639
https://doi.org/10.1155/2010/127639
https://doi.org/10.1109/10.554762
https://doi.org/10.1109/10.554762
https://doi.org/10.1109/10.554762
https://doi.org/10.1109/CIC.2000.898539
https://doi.org/10.1109/CIC.2000.898539

