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Combining Low-dimensional 
Wavelet Features and Support 
Vector Machine for Arrhythmia 
Beat Classification
Qin Qin  1, Jianqing Li1, Li Zhang2, Yinggao Yue1 & Chengyu Liu  1

Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. 
Feature extraction is an important prerequisite prior to classification since it provides the classifier 
with input features, and the performance of classifier depends significantly on the quality of these 
features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. 
It employs wavelet multi-resolution analysis to extract time-frequency domain features and then 
applies principle component analysis to reduce the dimension of the feature vector. In classification, 
12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one 
support vector machine, which is conducted in form of 10-fold cross validation with beat-based and 
record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, 
our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, 
respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, 
using the record-based training scheme.

Electrocardiogram (ECG) provides detailed information on a patient’s heart status. Cardiac arrhythmias are 
groups of conditions in which the electrical activity of the heart is irregular, faster or slower than normal, or even 
waveform malformation1. Any disorder of heart rhythm or alteration in morphological pattern is an indication 
of some underlying pathology, which could be detected by analyzing the ECG waveforms. However, clinical 
analysis and diagnosis using ECG signals by physicians, especially for long-term monitoring cases, are extremely 
time-consuming and sometimes even unrealistic or inaccessible to remote areas. Consequently, automatic 
arrhythmia beat classification is urgently required although challenging for dynamic ECG processing.

There are three main steps in arrhythmia beat classification, namely, feature extraction, feature selection, and 
classifier construction2–4. As a premise of classification, feature extraction from ECG signals is an important and 
preliminary step since reliable and robust classification relies on effective feature representations. An ECG feature 
can be defined as a distinctive or characteristic measurement, extracted from a beat episode used to discriminate 
its type5, 6. Features are expected to represent patterns with purpose of minimizing the loss of essential informa-
tion. Generally, they are performed either in time domain to obtain morphological features7–12, or in frequency 
domain to discover changes in power spectrum of ECG waves13–19. Or they are used in time-frequency domain to 
exhibit simultaneously morphological and spectral features20–24.

In the related research, numerous feature extraction techniques have been developed. In2, a combination of 
linear and nonlinear features was used as input to the support vector machine (SVM) classifier with a radial basis 
function (RBF) kernel. Using a 10-fold cross validation method, sensitivity of 98.91%, specificity of 97.85% and 
accuracy of 98.91% were reported for the classification of five types of arrhythmia when evaluated using a set of 
110094 beats from MIT-BIH arrhythmia database (MITDB). In5, four features (AC power, kurtosis, skewness 
and RR interval ratio) were extracted from each QRS complex by using the fourth and fifth decomposition level 
derived from dual tree complex wavelet transform. In this technique, the multi-layer back propagation neural 
network (BPNN) was trained by using the first three-minute signals of each ECG record, and the remaining 
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27-minute signals of each ECG record were used for test. An overall sensitivity of 94.64% was achieved. The work 
of23 employed principal component analysis (PCA) to extract discrete cosine transform (DCT) coefficients from 
segmented ECG beats as input features for propagation neural network (PNN)-based classification. Their method 
has obtained an average accuracy rate of 99.52%, sensitivity of 98.69%, and specificity of 99.91% using 10-fold 
cross validation for the classification of six types of mixed heartbeats. The work of25 adopted morphological and 
temporal features to classify six types of ECG beats, i.e. normal (N), atrial premature contraction (A), premature 
ventricular contraction (V), right bundle branch block (R), left bundle branch block (L) and paced (P) beats. The 
work employed particle swarm optimization (PSO)-based feature optimization and SVM-based classification. 
Tested with a set of randomly selected beats over three trials, an overall accuracy of 89.72% was achieved for the 
evaluation of 40438 test beats from 20 MITDB ECG records. The work of26 took advantage of a similar method as 
the one illustrated in25 to classify another six types of beats. Nevertheless, their experimental results were limited 
owing to the usage of a small dataset from MITDB for evaluation. It was also unclear whether the training and test 
sets are contributed by the same individuals, or otherwise. Based on the statistical theory, the work of27 described 
a novel feature extraction method using higher order statistics of wavelet packet coefficients. Five beat classes 
from MITDB were recognized by the k-nearest neighbors (k-NN) algorithm. Their method employed independ-
ent 3345 and 2542 beats for training and test, respectively. It obtained 90% for sensitivity, 92% for selectivity and 
98% for specificity. According to28, 29, among all the methods, wavelet transform is still considered as the most 
efficient and prevalent tool for ECG feature extraction. Due to the non-stationary property of ECG signals, the 
inherent properties of wavelet transform include excellent time-frequency location and cross sub-band similarity 
for such types of signals30.

There are many studies focusing on demonstrating the effective measures for ECG feature extraction. 
However, the problem of dimensionality reduction has rarely been explored31. Generally, a large number of fea-
tures will benefit the classifier to construct classification model with comprehensive knowledge over the training 
samples. Meanwhile, a large number of features also increase the computational complexity32. A superior feature 
vector should contain optimal elements that describe the critical characteristics of a signal with less redundancy. 
Although wavelet features can efficiently provide a comprehensive description in time-frequency domain, some 
of the coefficients may contain redundant information. Currently, the most classical dimensionality reduction 
algorithm is PCA29, 33. Apart from it, researchers have proposed many other advanced feature selection tech-
niques for dimensionality reduction. In20, an adaptive feature selection system for ECG wavelet coefficient was 
established by sorting feature priority. The system has achieved an improved recognition rate of 98.92% for the 
evaluation of a set of randomly selected 100441 beats from MITDB using a modified SVM classifier. However, 
the feature dimension in their work was still high, i.e. greater than 50. Unlike conventional methods, a Teager 
energy-based ECG feature extraction scheme was presented in34. Only two features were exhibited for neural 
network-based classification. The scheme has realized an average classification accuracy of 95% over the evalua-
tion of 67960 beats. In35, the authors compared three dimensionality reduction methods, i.e. PCA, linear discri-
minant analysis (LDA) and independent component analysis (ICA), on wavelet coefficients. It was shown that 
ICA integrated with a PNN classifier achieved the best performance, i.e. 99.28%, 97.97%, and 99.83% for the 
average accuracy rate, sensitivity and specificity, respectively, for the classification of five types of beat classes.

Apart from the aforementioned issues, there is another important problem rarely illustrated in the published 
literatures. Most of the ECG feature extraction techniques verify the feature performance by the application of 
classifiers with training and test set randomly selected from the database, or a certain fraction of each class is 
selected as the training set and the remaining heartbeats are used as the test set. However, it should be noted 
that this classification scheme is not a realistic performance measure of automatic heartbeat classification in 
real-world applications. It leads to optimistic results since the inter-individual variation in ECG characteristics is 
less in such tests because some of the training and test beats may come from the same patient. This weighs against 
the principle of pattern recognition that the training and test beats should be completely from different individu-
als, and few researchers have demonstrated the detailed research addressing this issue.

To these ends, a wavelet based feature extraction and PCA based feature reduction method was proposed in 
this study. Then we used SVM for arrhythmia beat classification with a 10-fold cross validation. Two training 
schemes, i.e., beat-based and record-based schemes, were used for classification evaluations.

The remainder of the paper is organized as follows. Section 2 elaborated the detailed procedure of the pro-
posed algorithm, along with the dataset and the evaluation indices. Section 3 demonstrated the classification 
results over two different training schemes. Section 4 compared our method with several recent developments, 
where feasible measures were also discussed to improve the classification performance on imbalanced beat distri-
bution. Finally, the summarization of this study was presented in Section 5.

Methods
Dataset. The MITDB comprises of 48 ECG records and each record contains a 30-minute ECG signal. The 
signals are sampled at 360 Hz with 11-bit resolution over a 10 mV range and band-pass filtered at 0.1~100 Hz36. 
The ECG records from this database include signals with acceptable quality, sharp and tall P and T waves, negative 
R waves, small R-peak amplitudes, wider R waves, muscle noise, baseline drift, sudden changes in beat morphol-
ogy, multiform V beats, long pauses and irregular heart rhythms37. In this study, the Lead II ECGs in each record 
are used. The arrhythmia annotations are provided for each ECG beat (annotated at the R-peak locations) from 
the database. There are up to 16 different types of arrhythmia. In this study, only six types (A, L, N, P, R and V 
beat) are used since these beats occupies the majority of the database (107049 out of a total of 109966).

Ten-fold cross validation scheme is used for the evaluation of this research. For arrhythmia classification, the 
most frequently employed cross validation scheme is randomly and equally selecting the beats from each clas-
sification type for each folder, i.e., the beat-based cross validation scheme. However, this training scheme may 
result in over-fitting problem since the training and test beats can come from the same record. i.e., from the same 



www.nature.com/scientificreports/

3Scientific RepoRtS | 7: 6067 | DOI:10.1038/s41598-017-06596-z

patient. While the record-based cross validation scheme can avoid the above over-fitting problem since all beats 
in the test set completely come from unknown patients (i.e. different individuals). Thus, both beat-based and 
record-based cross validation schemes are adopted in this study. Tables 1 and 2 illustrate the data profiles for the 
two schemes. Table 3 shows the record division of the training and test sets for the record-based cross validation 
scheme demonstrated in Table 2. It should be noted that some of the beat types only exist in several records (e.g. 
4 records containing the L beat; 6 records containing the R beat, and 4 records containing the V beat). As a result, 
these records may be used more than once as the test data in cross validation.

Method description. The flowchart of the proposed method is shown in Fig. 1. In Step 1, an ECG signal was 
segmented into 0.7 s episodes based on the R-peak locations provided by MITDB. In Step 2, each 0.7 s ECG epi-
sode was analyzed by wavelet multi-resolution analysis (WMRA), and thus the wavelet features were generated. 
In Step 3, PCA was used to reduce the feature dimension to generate the low-dimensional wavelet features. In Step 
4, both beat-based and record-based cross validation schemes were used for the training of the SVM model, and 
the corresponding accuracies of arrhythmia beat classification were obtained.

Step 1: beat segmentation. ECG beat segmentation is the process of intercepting multiple points in the 
signal so that not only successive beats are separated, but also the waveforms embedded in every beat are dis-
tinguished38–40. This definition clarifies two types of ECG beat features: single-beat and multiple-beat features. 
The former refers to the features that are extracted from a single beat, which usually contains one and only one 

Folder

Number of beats in training set Total 
training 
beats

Number of beats in test set Total 
test 
beatsA L N P R V A L N P R V

1 2292 7265 67520 6323 6530 6417 96347 254 807 7502 702 725 712 10702

2 2292 7265 67520 6323 6530 6416 96346 254 807 7502 702 725 713 10703

3 2292 7265 67520 6323 6530 6416 96346 254 807 7502 702 725 713 10703

4 2292 7265 67520 6323 6530 6416 96346 254 807 7502 702 725 713 10703

5 2291 7265 67520 6323 6530 6416 96345 255 807 7502 702 725 713 10704

6 2291 7265 67520 6322 6529 6416 96343 255 807 7502 703 726 713 10706

7 2291 7265 67520 6322 6529 6416 96343 255 807 7502 703 726 713 10706

8 2291 7265 67520 6322 6529 6416 96343 255 807 7502 703 726 713 10706

9 2291 7264 67519 6322 6529 6416 96341 255 808 7503 703 726 713 10708

10 2291 7264 67519 6322 6529 6416 96341 255 808 7503 703 726 713 10708

Table 1. Data profile for the beat-based 10-fold cross validation scheme.

Folder

Number of beats in training set Total 
training 
beats

Number of beats in test set Total 
test 
beatsA L N P R V A L N P R V

1 2414 5581 70682 5483 5090 6912 96162 132 2491 4340 1542 2165 217 10887

2 2544 5949 70989 4947 5725 6461 96615 2 2123 4033 2078 1530 668 10434

3 2427 6615 68715 5647 7170 6979 97553 119 1457 6307 1378 85 150 9496

4 2544 6071 70167 4998 5430 6760 95970 2 2001 4855 2027 1825 369 11079

5 2545 5581 70719 4947 6002 7027 96821 1 2491 4303 2078 1253 102 10228

6 1128 5949 70189 5483 6858 6503 96110 1418 2123 4833 1542 397 626 10939

7 1960 6615 69882 4998 5005 6809 95269 586 1457 5140 2027 2250 320 11780

8 2534 6071 69583 5647 5725 6596 96156 12 2001 5439 1378 1530 533 10893

9 2231 4124 72718 5483 7170 6824 98550 315 3948 2304 1542 85 305 8499

10 2539 5949 71772 4998 5430 6294 96982 7 2123 3250 2027 1825 835 10067

Table 2. Data profile for the record-based 10-fold cross validation scheme.

Folder Training set Test set Folder Training set Test set

1 All other records 100, 101, 109, 118, 217 6 All other records 111, 202, 203, 217, 232

2 All other records 105, 106, 107, 111, 124 7 All other records 102, 118, 207, 209, 210

3 All other records 104, 112, 113, 114, 207 8 All other records 104, 124, 214, 215, 219

4 All other records 102, 116, 117, 212, 214 9 All other records 109, 207, 217, 222

5 All other records 107, 109, 122, 123, 231 10 All other records 102, 111, 212, 233

Table 3. Record division of the training and test sets for the record-based cross validation scheme.
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R-peak. Meanwhile, the latter refers to the features that are dependent on at least two successive beats. These fea-
tures include more information than one R-peak. Typical waveforms and beat segmentation on an ECG signal are 
illustrated in Fig. 2. As can be seen, the positions of P wave, QRS complex and T wave are related directly to the 
location of the R-peak, which is generally regarded as the segmentation symbol.

According to41, the general frequency of ECG rhythm is between 60 and 80 per minute, hence, a 0.25 s offset 
before R-peak is adopted as the T1 duration and a 0.45 s offset after R-peak is adopted as the T2 duration, resulting 
in a length of 0.7 s (252 points with sampling frequency of 360 Hz as illustrated in37) signal segment for each beat 
to cover the P wave, QRS complex and T wave.

Step 2: WMRA coefficients. WMRA enhances the signal by extracting variable information with differ-
ent translation and shrinkage scales. It is very suitable to process an ECG signal that is non-stationary of small 
amplitude (0.01~5 mV) and low frequency (0.05~100 Hz)42. This technique also provides a high reduction in 
computational time43. By using WMRA, frequency bands below 0.05 Hz and above 100 Hz can be excluded. 
Simultaneously, some interference with frequency concentrated in these bands can be removed44. In addition, 
according to the Nyquist criterion, sub-frequency band presented by each decomposition level is directly related 
to the sampling rate43. Consequently, the ECG signals, sampled at 360 Hz, are decomposed up to 8 levels in this 
study.

Figure 3 shows the decomposition procedure of 8-level WMRA using bior6.8 wavelet (the reason for choosing 
this wavelet is illustrated in Supplementary Appendix). WMRA decomposes the sampling frequency by a factor 
of 2 into high frequency band of detail coefficient (cDj) and low frequency band of approximation coefficient 
(cAj), both in Level j. The decomposition is repeated until the continuous sub-frequency bands contain the ECG 
frequency interval of 0.05~100 Hz. Among the wavelet coefficients, cD1 ∼ cD8 consist of frequency components 
in range of 0.70-180 Hz, which is the ECG frequency band of interest. cA8 with frequency band 0~0.70 Hz is 

Figure 1. Block diagram of the proposed feature extraction algorithm.

Figure 2. Beat segmentation of a typical ECG signal.
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beyond the ECG frequency. It is not the employed coefficient containing baseline drift and other interference. 
Consequently, cA8 is neglected and cD1 ∼ cD8 are preserved as original features.

Step 3: PCA dimensionality reduction. PCA uses an orthogonal transformation to convert a set of obser-
vations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal com-
ponents. It can be done by eigenvalue decomposition of a data covariance matrix or singular value decomposition 
of a data matrix. This transformation is defined in such a way that the first principal component has the largest 
possible, and each succeeding component in turn has the highest variance possible under the constraint that it 
is orthogonal to the preceding components. The results of a PCA are usually discussed in terms of component 
scores. If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data space, PCA can 
produce a lower-dimensional feature viewed from its most informative viewpoint35.

The total number of wavelet coefficients in all decomposition levels depends on the beat length L. As illus-
trated in Fig. 3, when down sampling, the frequency is divided into two complementary intervals, and the signal 
is intercepted into half of the original length. After 8-level WMRA, the total number of detail coefficients will be 
at least + + … +( )L1

2
1

2
1

21 2 8 . Obviously, not all the coefficients are necessary to form the input features owing 
to the redundancy that may result in high time consumption in classification procedure. The original features are 
arranged into a temporary vector with cD1 as the beginning and cD8 as the ending, as shown in Fig. 4. PCA 
reduces the dimension by using the first few principal components. For example, if the accumulated contributory 
ratio of the first five principle components has already reached 95% representing or spanning in the whole feature 
space, then, the five components are taken as the new features.

Step 4: SVM classification. One-versus-one SVM, which can be implemented in multi-classification appli-
cations, is an enhanced classifier derived from SVM45. Since the inherent property of SVM can only determine 
one hyperplane of two classes. The hyperplane corresponding to each class should be trained individually. By 
using a popular SVM training tool that determines the support vectors for each hyperplane, the remaining pro-
cess is to reach the final decision for each class based on the classification results of all hyperplanes.

One-versus-one SVM uses the majority voting scheme to categorize all the hyperplanes, with which the clas-
sification result is determined by selecting the maximum likelihood class. For a test set S, if there are n classes, 
the total number of hyperplanes constructed among these classes is n(n−1)/2. The class having the most votes 
given by all the hyperplanes is recognized as the outcome of the corresponding hyperplane. For instance, if the 
classification output of a hyperplane indicates that the input set S should be in class C, then class C gets one vote 
from this hyperplane. The set S is predicted to be in class C if this class get the maximum number of votes ϕ(C, 
S), which is defined as

∑ϕ ν=
=

−
C S C Sp( , ) ( , , )

(1)p

n n

1

( 1)/2

Figure 3. The decomposition process of the 8-level WMRA.

Figure 4. Low-dimensional feature vector generated by PCA using wavelet coefficients.
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ν δ=





=C S S Cp p( , , ) 1 if ( , )
0 otherwise (2)

where p denotes the index of a hyperplane, while v(p, C, S) represents the Boolean function for the vote corre-
sponding to the p-th hyperplane, and δ(p, S) is the class index of the classification result for the p-th hyperplane.

Evaluation method. The classification performance is evaluated using sensitivity (SEN), specificity (SPE) 
and accuracy (ACC). The three measures of one beat type H are expressed in Eqs (3)~(5).
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where K is the number of beat types; TPH (true positives) is the number of H types that are correctly classified; 
TNH (true negative) is the number of not-H types that are correctly classified; FPH (false positive) is the number 
of not-H types that are incorrectly predicted as H types; and FNH (false negative) is the number of H types that 
are incorrectly predicted as not-H types. For instance, the four indices of N beat, i.e. TPN, TNN, FPN and FNN, are 
defined in Table 4. TP, TN, FP and FN of other beats can be defined in a similar way.

Data availability. The datasets generated and analyzed during the current study are available from the cor-
responding author on reasonable request. The raw ECG datasets used during the study are available in the MIT 
repository (http://physionet.org/cgi-bin/atm/ATM).

Results
Results of feature selection using PCA. After applying WMRA, a total of 373 candidate features were 
generated for dimensionality reduction by PCA. Figure 5 shows the average results of SEN, SPE and ACC using 
the 10-fold cross validation for the two schemes. The tested numbers of principle components are evens from 
2 to 50. For the beat-based scheme, with the increase of the number of principle components, the classification 
accuracy firstly increases rapidly and then remains at stable levels using 12 or more principle components. For 
the record-based scheme, classification accuracy also remains at stable levels using 12 or more principle compo-
nents. Thus, we used 12-element input features for the subsequent beat-based and record-based cross validation 
schemes.

Results of beat-based 10-folder cross validation scheme. One-versus-one SVM is implemented 
using RBF with the Gaussian kernel. We used the recommended values for the parameter settings, i.e. C = 10 and 
γ = 0.1, as suggested in45. Figure 6a displays the classification results of the beat-based 10-fold cross validation, 
and the total results are summarized in Table 5, which shows that the classification with the 12-element feature 
vectors has achieved 99.09%, 99.82% and 99.70% for SEN, SPE and ACC, respectively (the detailed results are 
shown in Supplementary Tables S1 and S2). Specifically, P beats achieve the highest classification accuracy among 
all types. All P beats in the 3rd, 4th, 9th folders are correctly recognized. In addition, the classification accuracies 
for V beats exceed 99.50% for each folder. However, the classification sensitivities for A beats are lowest since the 
waveforms of A beats are extremely similar as those of N beats.

Results of record-based 10-folder cross validation scheme. The recognition rates of record-based 
scheme are much worse compared to those of the beat-based scheme, as demonstrated in Fig. 6b. The classifica-
tion rates are no more than 90% for all beat types. The average SEN, SPE and ACC are 44.40%, 88.88% and 81.47% 
respectively (the detailed results are shown in Supplementary Tables S3 and S4) as illustrated in Table 5. The most 
significant characteristics in Table 5 are the recognition results of N beat, which has the highest SEN but lowest 
SPE and ACC among the six types of beats. Namely, the N beat classification has large TP values but small TN 

A L N P R V

A TNN TNN FPN TNN TNN TNN

L TNN TNN FPN TNN TNN TNN

N FNN FNN TPN FNN FNN FNN

P TNN TNN FPN TNN TNN TNN

R TNN TNN FPN TNN TNN TNN

V TNN TNN FPN TNN TNN TNN

Table 4. Instructions for the definitions of TP, TN, FP, and FN for N beat.

http://physionet.org/cgi-bin/atm/ATM
http://S1
http://S2
http://S3
http://S4
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values. The phenomenon indicates that the majority of beats are recognized as N beats due to the imbalanced 
data. In MITDB, each beat type excluding the N beat is greatly outnumbered by the N beat, which occupies a 
majority class of approximately 70%. As a result, SVM tends to sort through huge populations of beats to find the 
small number of beats.

Figure 5. Classification rates with different numbers of principle components.

Figure 6. Classification performance for the beat-based (a) and record-based (b) schemes using 10-fold cross 
validation.

Beat type

Beat-based training scheme Record-based training scheme

SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) ACC (%)

Mean

A 83.35 99.91 99.52 0.76 93.98 91.63

L 99.32 99.97 99.92 0.00 99.44 77.68

N 99.67 98.14 99.21 90.79 53.19 70.18

P 99.87 100.0 99.99 11.00 99.95 85.02

R 99.27 99.96 99.92 4.17 99.96 88.46

V 97.45 99.79 99.63 74.32 75.83 75.82

Total 99.09 99.82 99.70 44.40 88.88 81.47

Standard deviation

A 1.76 0.03 0.05 1.26 5.78 5.42

L 0.21 0.02 0.02 0.00 1.07 8.77

N 0.07 0.21 0.07 10.82 18.45 10.11

P 0.10 0.01 0.01 17.78 0.08 3.43

R 0.31 0.02 0.03 12.42 0.03 7.18

V 0.67 0.04 0.07 10.59 15.12 14.58

Total 0.08 0.02 0.03 9.46 1.89 3.15

Table 5. Classification Results for the 10-fold cross validation.
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Discussions
By exploring the time-frequency property of ECG beat, our work aimed to conduct tentative research on 
low-dimensional wavelet feature extraction and classification performance with the training set mixed with or 
independent from the test set. For the beat-based training scheme, our method could achieve better classification 
results than those of most of the investigated literatures. While for the record-based training scheme, the SVM 
classifier failed to perform effectively with the proposed features, no matter the feature dimension was reduced 
or not.

Our algorithm is compared with the related works over recent years, as illustrated in Table 6. All works com-
pared here use the MITDB ECG data. It should be noted that these works use different number of classes, records, 
amount of data, and signal conditioning methods. All these factors can affect the classification performance. 
Besides, few publications evaluate their methods with the test set separated from the training set. Classifiers in 
most of the listed literatures are trained by methods similar to the beat-based scheme. As can be seen from Table 6, 
the most widely used feature extraction methods and classifiers are wavelet transform and SVM. Although many 
literatures have achieved high recognition rates, e.g. greater than 90%, with different feature dimensions, most 
of them test their algorithms over small datasets. Different from them, our method utilizes all the effective beats 
from MITDB and has achieved high classification performance with fewer features. The comparison demon-
strates that the proposed scheme has the potential for solving the problem of ECG beat recognition and can be 
considered as a powerful tool for automatic cardiac arrhythmia classification.

After PCA procedure, the feature dimension has decreased to 3.2% of the original dimension, while SVM 
property is not affected at all and achieves high classification rates for the beat-based training scheme. The 
substantial reduction of feature dimension indicates two critical issues. On one hand, wavelet coefficient from 
WMRA contains considerable redundancy, although it is regarded as one of the best feature extraction methods 
that can comprehensively represent time-frequency characteristics of an ECG signal. The redundant features 
may provide repetitive or even contradictory information, which may give rise to misleading the construction 
of a precise classification model. On the other, the classification process would be more efficient in training and 
prediction procedure with less but exhaustive features, without any degeneration in classification property.

With respect to the record-based training scheme, an effective solution for the imbalanced beats is to test 
different penalties for the margin slack variables of each class via minimizing the incorrectly classified beats 
by cross validation. But rigorous penalty factor results in over-fitting classification, because SVM training will 
construct extremely accurate hyper-plane that can separate all training beat samples thoroughly without any 
misclassification.

Another reason for the ineffective recognition of record-based training scheme is the irrelevant beats from 
unknown test set. In beat-based training scheme, chances are that beats in training and test set may come from the 
same ECG record. Although the training beats are also imbalanced, they have intensive relevance with test beats 
which can be accurately recognized by SVM. While in record-based training scheme, test set is completely inde-
pendent from the training set with no interrelation. If each training beat type does not contain diverse waveforms, 

Figure 7. Comparison between our method and traditional wavelet transform-based methods.
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it would be difficult for the SVM to identify an unknown beat due to lack of comprehensive knowledge over the 
training beats. The following points are potential approaches to improve the recognition performance of clas-
sifiers: 1) Collecting more beats, especially for the unusual beat types; 2) Improving or developing multi-class 
classification methods for imbalanced learning that will consider varying relationships between classes, such as 
deep learning; 3) Focusing on the structure and nature of ECG beats in minority classes to gain a better insight 
into the source of learning difficulties; 4) Introducing efficient clustering methods for unevenly distributed beat 
groups and measures to properly evaluate and select partitioning models in such scenarios.

The differences between the numerous published works and this research are as follows.

 1) Firstly, features were not extracted from wavelet coefficients directly in our study. Instead, they were 
obtained by transforming the wavelet coefficients via PCA. This is different from the traditional wavelet 
transform-based method that uses feature selection to reduce the feature dimension. In our work, PCA was 
directly performed on the wavelet coefficients for dimensionality reduction, therefore our work did not 
include a feature selection step, as shown in Fig. 7, where the left-hand side showed the traditional scheme 
while the right-hand side showed the scheme used in our work.

 2) Secondly, most of the literatures only considered wavelet coefficients in some certain levels, while in our 
study, all detail coefficients from 1st to 8th level were used. Besides, in many literatures, low-dimensional 
features were separately collected from each of the independent sub-frequency bands, while in our study, 

Literatures and feature extraction 
methods

Feature selection 
(dimension)

Beat 
types

Training/test 
beats Classifiers

Independent 
training/test data

k-fold cross 
validation SEN (%) SPE (%)

ACC 
(%)

Spectral correlation1 Yes (88) 5 Totally 6259 SVM Unknown 10-fold 99.20 99.70 98.60

Wavelet transform, morphological 
features5 No (28) 5 10675/93894 Artificial neural 

network No No 88.60 96.18 97.86

Morphological features7 Yes (6) 6 35848/35848
Linear 
discriminant 
analysis

No No 91.19 98.65 94.03

Morphological features8 No (13) 3 600/30273 SVM, neural 
network No No 98.52 99.19 97.14

Time domain features9 No (9) 6 42427/14142 Decision tree No No 97.50 99.80 99.51

Morphological features10 No (16) 3 15509/8081 SVM, neural 
network Yes No 92.82 93.74 92.85

Morphological features11 No (8) 5 12570/12570 Regression neural 
network No No 85.50 99.40 99.40

Fourier transform, wavelet package14 Yes (70) 16 3345/2542 k-NN No No 85.59 99.56 93.59

Wavelet transform, cosine transform15 Yes (18) 4 720/360 SVM Unknown No 98.60 95.50 96.50

Wavelet transform16 Yes (24) 5 900/900 SVM, genetic 
algorithm No No 98.50 99.69 98.80

Higher order spectral17 No (7) 5 330/500 SVM Unknown No 90.00 87.93 85.79

Wavelet transform18 Yes (20) 4 360/360 SVM Unknown No 98.62 99.54 98.61

Temporal and spectral features21 Yes (15) 6 1440/720 SVM No No 97.60 93.80 95.20

Temporal and spectral features22 Yes (13) 8 Totally 17857 SVM No 5-fold 95.00 99.00 98.60

Higher order statistics, wavelet packet27 Yes (28) 5 3345/2542 k-NN Yes No 89.80 97.80 —

Hilbert-Huang transform32 Yes (18) 6 10700/10700 SVM No No 98.64 99.77 99.51

Wavelet transform46 Yes (18)
5 Totally 101352

SVM
Yes 44-fold — — 86.40

16 24100/86009 No No 99.32 — 99.01

Approximate entropy, wavelet packet47 Yes (9) 5 145/145 SVM, PNN Unknown No 98.70 99.70 98.60

Non-linear and center-clipping 
transform48 No (5) 5 13640/13640 Wavelet neural 

network No No 98.78 99.70 98.78

Eigenvector method49 Yes (12) 4 360/360 Recurrent neural 
network Unknown No 98.89 99.25 98.06

Higher order statistics50 No (24) 5 4000/14299 RBF neural 
network No No 92.93 98.52 95.18

Geometrical features51 No (18) 7 4035/3150 SVM, k-NN, 
BPNN No No 97.52 99.65 98.06

Wavelet transform, morphological 
features52 Yes (8) 3 50928/49636

Linear 
discriminant 
analysis

Yes No 80.00 — 94.00

Wavelet transform, linear prediction 
model53 No (12) 3 50554/49273

Linear 
discriminant 
analysis

Unknown No 86.50 — 86.50

Cross correlation54 No (30) 3 41961/51285 Artificial neural 
network Unknown No 97.49 — 95.24

WMRA [This work] Yes (12) 6 Totally 107049 SVM
Yes

10-fold
44.40 88.88 81.47

No 99.09 99.82 99.70

Table 6. Comparison between the related works and the method proposed in this study.
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all the detail coefficients were arranged into a 1-D temporary vector, and PCA was directly applied to this 
temporary vector for dimensionality reduction by choosing the first few principal components with high 
contributory ratios.

 3) Most importantly, the beat-based training scheme may result in over-fitting problem since the training and 
test beats may be contributed by the same patient. In our study, apart from the beat-based training scheme, 
a record-based scheme was also investigated, i.e., the classifier was trained and tested on totally separate 
records from different individuals. This is the most important aspect of our proposed study since other 
researchers usually verify the high performance of classifiers using the beat-based scheme without the 
verification of the record-based scheme.

As a most recently developed method, deep learning is attracting more and more attention due to its 
self-optimization over input features. This property may improve the classification rates of record-based training 
scheme, since deep learning inherently fuses “feature extraction” and “classification” as an integrated one and 
directly constructs a decision-making function. Although researchers have exerted plenty of effort to develop 
high-performance classifier, enriching samples of each arrhythmia type is still the most effective and fundamen-
tal approach that is almost always overlooked. Developing new classification structure is an effective measure to 
improve classification accuracy, however, the performance of a training model still depends significantly on the 
training data.

Conclusions
This study describes a method of automatic feature extraction and classification for ECG beat. In feature extrac-
tion, ECG signals are segmented into 0.7 s beat episodes based on the R-peak locations. Wavelet coefficients are 
then collected by implementing WMRA on the episodes. The dimension of the full coefficients is reduced by 
PCA to obtain low-dimensional but efficient feature vectors. In classification, one-versus-one SVM combined 
with 10-fold cross validation is employed to recognize six types of ECG beats using a set of 12-element feature 
vectors. Tested upon a total of 107049 ECG beats, our work obtains a promising classification performance for the 
beat-based training scheme, but less effective performance for the record-based training scheme. The influence 
of the two training schemes on SVM classifier is also discussed. Compared with other techniques, our method is 
proven to be an effective alternative for automatic ECG feature extraction and classification to promote daily ECG 
monitoring. In future developments, we plan to increase the classification accuracy over the record-based training 
scheme in a number of ways, for example: (i) combining feature selection and feature dimensionality reduction 
processes; (ii) using the state-of-the-art deep learning method for classification of more types of heartbeats.
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