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Detection of Coupling in Short Physiological Series
by a Joint Distribution Entropy Method
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Abstract—Objective: In this study, we developed a joint distribu-
tion entropy (JDistEn) method to robustly estimate the coupling in
short physiological series. Methods: The JDistEn method is derived
from a joint distance matrix which is constructed from a combina-
tion of the distance matrix corresponding to each individual data
channel using a geometric mean calculation. A coupled Rössler
system and a coupled dual-kinetics neural mass model were used
to examine how well JDistEn performed, specifically, its sensitivity
for detecting weak coupling, its consistency in gauging coupling
strength, and its reliability in processing input of decreased data
length. Performance of JDistEn in estimating physiological cou-
pling was further examined with bivariate electroencephalography
data from rats and RR interval and diastolic time interval series
from human beings. Cross-sample entropy (XSampEn), cross-
conditional entropy (XCE), and Shannon entropy of diagonal lines
in the joint recurrence plots (JENT) were applied for purposes
of comparison. Results: Simulation results suggest that JDistEn
showed markedly higher sensitivity than XSampEn, XCE, and
JENT for dynamics in weak coupling, although as the simulation
models were more intensively coupled, JDistEn performance was
comparable to the three others. In addition, this improved sensitiv-
ity was much more pronounced for short datasets. Experimental
results further confirmed that JDistEn outperformed XSampEn,
XCE, and JENT for detecting weak coupling, especially for short
physiological data. Conclusion: This study suggested that our pro-
posed JDistEn could be useful for continuous and even real-time
coupling analysis for physiological signals in clinical practice.

Index Terms—Cardiovascular dynamics, coupling, cross-
conditional entropy (XCE), cross-sample entropy (XSampEn), di-
astolic time interval (DTI), electroencephalography (EEG), joint
distribution entropy (JDistEn), joint recurrence plot, neural mass
model (NMM), RR interval (RRI).

I. INTRODUCTION

T IME-SERIES analysis methods have been extensively
used for understanding neurological control mechanisms
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in cerebrovascular, cardiovascular, and cardiorespiratory sys-
tems. These systems are composed of a myriad of structural
units that are highly interconnected, resulting in a degree of
coupling which transiently changes over time and under differ-
ent physiological or pathological states [1]–[6]. Means of reli-
ably estimating such coupling has recently attracted increasing
attention.

Due to the nonlinear nature of physiological systems, tra-
ditional linear time- and frequency-domain methods, such as
crosscorrelation and crosscoherence, although extensively used
[7], cannot fully describe the interactions among these highly
complex biosystems. Advances in nonlinear dynamics and
chaos theory suggest that a number of nonlinear methods are
better able to detect the amplitude or phase relations between tra-
jectories in the state space, such as generalized synchronization
[8], dynamical interdependence [9], and phase synchronization
[2], [10], [11]. However, to achieve reliable estimations, these
methods usually require a long time-series (usually over 10 000
or more sampling points) [12], and thus, may not be accept-
able in clinical examination with a short screening time or in
real-time point-of-care monitoring [13].

A combination of chaos theory and information theory has
fostered the development of several methods for describing en-
tropy that show great potential for short-term analysis. These
methods include crossapproximate entropy [14], cross-sample
entropy (XSampEn) [15], crossconditional entropy (XCE) [16],
and Shannon entropy of diagonal lines with different lengths
in joint recurrence plots (JENT) [17], among others. Typically,
these methods require a predefined threshold parameter [18]–
[20] for judging the similarity or “recurrence” of vectors in the
state space. Although some “rules of thumb” have been advo-
cated, e.g., using a percent of the maximum state-space diameter
or a percent of the standard deviation of the time series [21],
it remains a matter of debate to define an appropriate threshold
[22]. A tiny variation of the threshold may lead to a consider-
able change in calculation of similar or recurrent vectors. This
instability caused by the threshold parameter may be aggra-
vated in the context of a short dataset. Although these methods
were proved acceptable with limited data samples (usually sev-
eral thousand sampling points or more), less study has been
performed to achieve reliable estimations from a short dataset
(e.g., 1000 sampling points or less) [16], [23].

It should be noted that the above limitations arise from the
kernel algorithms for univariate analysis (e.g., approximate en-
tropy [24], sample entropy [25], conditional entropy [26], and
Shannon entropy of diagonal lines in recurrence plots [27]). So-
lutions for univariate algorithms can therefore be employed to
eliminate the limitations in multivariate analysis.
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Most recently, we have developed a novel distribution entropy
(DistEn) method for testing complexity of univariate physiolog-
ical time series [28]. DistEn is defined from all the intervector
distances in the state space; this approach differs from traditional
methods, which consider only recurrent vectors. Therefore, Dis-
tEn is less affected by data length. A previous study found that
DistEn could achieve good reliability even with the data length
decreased to only 50 points [28].

In this paper, we show how we came to develop a novel al-
gorithm for quantifying the coupling of bivariate time series
based on DistEn. First, a joint distance matrix, derived from
the univariate distance matrices corresponding to all data chan-
nels through computing the geometric mean, was constructed.
The new bivariate algorithm, named joint distribution entropy
(JDistEn), was then constructed by combining the joint distance
matrix and DistEn. Finally, the performance of the proposed
JDistEn was initially examined on a coupled Rössler system
and a coupled dual-kinetics neural mass model (NMM), then
validated using short-term bivariate rat electroencephalography
(EEG) data and coupling data between the human RR interval
and diastolic time interval (RRI-DTI) time series.

II. ALGORITHM FOR JDISTEN

A. Distribution Entropy

By definition, DistEn quantifies the amount of information
contained in the state space of time series through estimating
the distribution feature of intervector distances. In our last study
[28], the amount of information in state space was considered as
a certain representation of time-series complexity, as evidenced
by the fact that time series with different dynamical regimes
have distinctly different distributions. Evaluation of benchmark
data demonstrated that a time series with chaotic regime is ac-
companied by dispersedly distributed intervector distances sug-
gesting large amount of information, whereas the distribution
becomes concentrative for periodic time series which are thus
characterized by smaller amount of information [28]. In addi-
tion, time series with the same dynamical regime (e.g., periodic
regime) could indicate different complexity levels since they do
not necessarily have the same distribution feature in the state
space.

For a time-series {u (i) , i = 1, 2, . . . , N}, the DistEn algo-
rithm is summarized briefly as follows [28]:

1) State-space reconstruction
Form X(i) by X(i) = [u(i), u(i + 1), . . . , u(i + m
−1)], where i = 1, 2, . . . , N − m, m represents the em-
bedding dimension, and X (i) the vectors in the state
space.

2) Distance matrix construction
Define the intervector distance matrix D using

D = {‖X (i) ,X (j)‖ , i, j = 1, 2, . . .} , (1)

where ‖‖ indicates any kind of norm functions. The max-
imum norm has been applied in the DistEn algorithm.

3) Probability density estimation
Estimate the empirical probability density function
(ePDF) of distance by the histogram of all elements

except the main diagonal of D with B bins. Denote the
probability (p) of each bin by pt , where t = 1, 2, . . . , B.

4) DistEn calculation
DistEn is calculated from the formula for the Shannon
information with a normalization

DistEn (m,B) = − 1
log2 (B)

B∑

t=1

pt log2 (pt). (2)

B. Joint Distance Matrix

For bivariate series [u1 (i) ;u2 (i)], i = 1, 2, . . . , N , each
data channel is rescaled to fit the range 0 to 1 by

�
uϕ (i) =

uϕ (i) − min (uϕ )
max (uϕ ) − min (uϕ )

(3)

where ϕ = 1, 2.
Define the joint distance matrix JD as

JD = J −
√

(J − D1) (J − D2) (4)

where J indicates the all-ones matrix and Dϕ the distance matrix
of channel ϕ (ϕ = 1, 2). Both the multiplication and the square-
root calculations are performed element by element.

C. Joint Distribution Entropy

The JDistEn algorithm is developed by combining the joint
distance matrix and DistEn. For the sake of a general defi-
nition, different embedding dimensions mϕ are used for the
reconstruction of different data channels, and a time delay τϕ is
introduced for each reconstruction process (here, ϕ = 1, 2). For
the bivariate series [u1 (i) ;u2 (i)], i = 1, 2, · · · , N , the JDistEn
algorithm is introduced as follows.

1) Bivariate state-space reconstruction
Rescale each data channel using (3), then reconstruct each
rescaled �

uϕ (i) to the state space separately with embed-
ding dimension mϕ and time delay τϕ for each ϕ = 1, 2
by

Xϕ (i)=
[

�
uϕ (i) ,

�
uϕ (i + τϕ ) , · · · , �

uϕ (i + (mϕ − 1) τϕ )
]
,

(5)
where i = 1, 2, · · · , N − n and n = max (mϕ ) ×
max (τϕ ).

2) Joint distance matrix construction
Define the distance matrix Dϕ for each series separately
by

Dϕ = {‖Xϕ (i) ,Xϕ (j)‖ , i, j = 1, 2, . . . , N − n} ,
(6)

where ‖‖ indicates the maximum norm. Equation (4) is
then used to define the joint distance matrix JD.

3) Probability density estimation
Estimate the ePDF of distance from the histogram of all
elements except the main diagonal of JD, and then, use
Doane’s formula to determine the optimal number of his-
togram bins [29]

B = 1 + log2 (n) + log2 (1 + |g1 | /σg1 ) , (7)

where n indicates the total number of observations, g1 the
skewness, and σg1 =

√
6 (n − 2) / [(n + 1) (n + 3)].
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4) JDistEn calculation
Define JDistEn by the formula for the Shannon informa-
tion

JDistEn (m, τ) = − 1
log2 (B)

B∑

t=1

pt log2 (pt). (8)

The normalization by log2 (B) was to consolidate results
from different values of B. The theoretical lower and upper
limits of JDistEn should be 0 and 1, corresponding to one-peak
and fully flat ePDF. It should be noted that pt log2 (pt) = 0 when
pt = 0 is followed in both (2) and (8).

III. EVALUATION OF SIMULATION MODELS

A. Evaluation of Coupled Rössler System

1) Model Description: The unidirectional drive-response
coupled Rössler system, described as

ẋd = −ωdyd − zd

ẏd = ωdxd + 0.15yd

żd = 0.2 + zd (xd − 10)

ẋr = −ωryr − zr + k (xd − xr )

ẏr = ωrxr + 0.15yr

żr = 0.2 + zr (xr − 10) (9)

was used, wherein the subscripts d and r denote the coordinates
for the drive and response systems, respectively, and k the cou-
pling strength. The ωd and ωr are forced to be nonidentical by
ωd,r = 1 ∓ ν (identical when ν = 0). Zheng and Hu demon-
strated the synchrony of the dynamics with different assign-
ments for ν and k [30]. The equations were integrated using the
variable step Runge–Kutta method (the ode45 differential equa-
tion solver in MATLAB, MathWorks, Natick, Massachusetts,
USA) with an initial step of 0.05, a maximum step of 0.05, and
a sampling interval of 0.3. A total of 1500 sampling points were
obtained for each variable, but the first 500 points were excluded
to ensure that the dynamics had stabilized. Time series of xd and
xr were taken as observables.

2) Quantification of a Given Method’s Sensitivity: Sensitiv-
ity is crucial for any coupling method since that factor deter-
mines a given method’s capacity for detecting weak couplings.
Sensitivity is defined by the critical coupling strength at which
the distribution ρH

k (x) of a specific coupling measure H was
significantly different from ρH

0 (x) [12]. According to Smirnov
and Andrzejak’s work [12], this can be obtained as follows.

The probability that a random sample from ρH
k (x) has a

higher value of H than a random sample from ρH
0 (x) is given

by

pH (k) =
∫ ∞

−∞

[∫ ∞

−∞
ρH

0 (x′) dx′
]

ρH
k (x′′) dx′′. (10)

The established XSampEn, XCE, and JENT methods were
taken as comparative methods. Their algorithms were described
in the Online Supplement. Due to the inverse relationship

between XSampEn and k, ρH
k (x) and ρH

0 (x) for XSampEn
were switched before inputting to (10). The same process was
done for XCE. Thus, by construction, we get pH (0) = 0.5, and
values of 1 are obtained if every value from ρH

k (x) is greater
(or less) than every value from ρH

0 (x). According to [12], we
used a critical value k95 at which pH (k95) = 0.95 to quantify
and compare the sensitivity of the four methods.

The first coupling was simulated with the identical coupled
Rössler dynamics by setting ν = 0 and for the second one by
setting ν = 0.02 to have almost identical coupled dynamics.
Weak couplings were introduced by varying k from zero to 0.03
in steps of 0.001 for each value of ν. A total of 100 time series
were produced to estimate the distributions of the four methods
for each combination of ν and k.

For calculations using the four methods, the embedding
dimension m and time delay τ were set at 3 and 11, respec-
tively, for both channels according to a differential entropy-
based method (see Section III in Online Supplement) [31]. The
threshold value r was set at 0.15 for XSampEn, the quantization
level at ξ = 6 for XCE, and minimum diagonal line length at
lmin = 2 for JENT.

3) Estimation of Coupling Strength: It is expected that a
given coupling method should shift monotonously toward higher
(or lower) values with coupling strength k. To evaluate how well
each of the four methods estimated coupling, we compared their
performance with a full range of k, from uncoupled (k = 0)
to strongly coupled dynamics (k = 0.2) [30] with a stepsize
of 0.005. The two examples—identical and almost identical
coupled dynamics—were used again by setting ν = 0 and ν =
0.02, respectively. We estimated the values of XSampEn, XCE,
JENT, and JDistEn using ensembles of 100 realizations for each
combination of ν and k. All input parameters for the calculation
followed the same setting in Section III-A-2 of this section.

4) Effect of Data Length: To further understand the perfor-
mance of the four methods for extremely short datasets, we
reperformed the coupling analysis on coupled Rössler systems
with ν = 0 and ν = 0.02, as described above. But this time, we
truncated the datasets and retained the first 100 sampling points
for the analysis.

5) Evaluation Results on the Coupled Rössler Systems:
a) Sensitivity: Fig. 1 shows the sensitivity results from the

four methods with ν = 0 and Fig. S2 (see the Online Supple-
ment) with ν = 0.02. The pH (k) values of XSampEn and JENT
did not reach the sensitivity threshold value 0.95 for all tested
coupling strengths from zero to 0.03 for both the identical and
almost identical coupled Rössler systems. It should be noted that
although pH (k) of XSampEn for ν = 0.02 reached the thresh-
old value 0.95 once at k = 0.15 to 0.2, it finally dropped below
it, as shown in Fig. S2 (a2). XCE for ν = 0 indicated a criti-
cal coupling strength 0.009 as shown in Fig. 1(b2). However,
as shown in Fig. S2(b2) for ν = 0.02, it failed to show such a
critical k value.

By comparison, JDistEn achieved significantly improved sen-
sitivity for both coupling systems. The critical coupling strength
was as low as 0.004 for ν = 0. In addition, although the three
other methods failed for ν = 0.02, DistEn still showed a rel-
atively low critical value k95 = 0.01. Note that in some cases
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Fig. 1. Quantification of the sensitivity of four methods for the identical coupled Rössler system (ν = 0). Panels in the upper row show the corresponding
distributions of XSampEn (a1), XCE (b1), JENT (c1), and JDistEn (d1) represented with mean value ± one standard deviation. Lower panels show the pH (k) for
XSampEn (a2), XCE (b2), JENT (c2), and JDistEn (d2), respectively. Horizontal dashed lines represent the sensitivity threshold value 0.95; vertical dashed lines
in (b2) and (d2) represent the critical coupling strengths k95 .

pH (k) drops below the threshold value 0.95, but it may be able
to represent a second crossing of this value. Then the k value for
the second crossing was used as the critical coupling strength,
e.g., k95 for JDistEn shown in Fig. S2(d2).

b) Coupling Estimation With 1000 Sampling Points:
Fig. 2 and Fig. S3 (see the Online Supplement) show the estima-
tion of coupling for ν = 0 and ν = 0.02, respectively. Examples
of trajectories of observables are also shown in the upper panels
of Figs. 2 and S3 by plotting the response observable versus
the drive observable values for an intuitive expression on the
coupled dynamics.

Fig. 2(b1) shows an increased XSampEn with the coupling
strength k increased from zero to 0.1, indicating a failure of
XSampEn since, by definition, it should decrease as k increase.
As k continues to increase from 0.1 to 0.2, XSampEn begins to
decrease. Next, as shown in Fig. S3(b1), for the almost identical
coupled Rössler system with ν = 0.02, XSampEn decreases
with k from 0.03 to 0.06 after an initial increase from zero to
around 0.03, which is followed by a plateau with k from 0.06 to
0.14. XSampEn then decreases again with k = 0.14 to 0.2. The
results suggest that XSampEn performed well only for relatively
strong coupling dynamics.

Figs. 2(b2) and S3(b2) both show an overall reduced XCE
with the coupling strength k. But Fig. 2(b2) also shows a plateau
from k = 0.03 to 0.13. An initial increasing phase is present for
the almost identical coupled Rössler system with ν = 0.02, as
shown in Fig. S3(b2). The results suggest that XCE should be
capable of detecting strong coupling for coupled Rössler system,
whereas special attention should be paid when it is used for weak
coupling analysis.

Fig. 2(b3) shows that JENT increases slightly with k for the
identical coupled Rössler system with ν = 0. However, when it

is for the coupled system with ν = 0.02, the results of JENT are
totally unacceptable.

JDistEn increases with the coupling strength k for both cou-
pled systems with ν = 0 and ν = 0.02, as shown in Fig. 2(b4)
and Fig. S3(b4), respectively. Different from the other three
methods, the increasing trends of JDistEn for weak coupling
are extremely significant. However, the increase becomes very
slight when k > 0.05 for the coupled Rössler system with ν = 0.
It even stops and remains unchanged when k > 0.15 for the
coupled Rössler system with ν = 0.02. The results confirm that
JDistEn was superior for detecting weak coupling. However, the
weak ability of JDistEn to differentiate between dynamics with
strong coupling strengths was also indicated.

c) Coupling Estimation With 100 Sampling Points: The
lower panels of Figs. 2 and S3 show the performance as the
data length decreased to 100 points. The standard deviations
of all four methods increased significantly, suggesting a com-
mon effect of insufficient data samples. Specifically, XSampEn
resulted in invalid values for some realizations, and thus, no
ensemble result was shown for a certain k values (see Fig. 2(c1)
and Fig. S3(c1)]. XCE, as shown in Fig. 2(c2), showed a similar
trend to the result in Fig. 2(b2). But when it is for the coupled
system with ν = 0.02, the results for XCE seemed to be a bit
complicated: with an overall decreasing trend after an initial
fluctuating phase from k = 0 to 0.07. JENT showed an overall
slight increase trend for both coupled systems with ν = 0 and
ν = 0.02, as shown in Fig. 2(c3) and Fig. S3(c3).

JDistEn behaved similarly to XCE. For the identical coupled
Rössler system with ν = 0, JDistEn shown similar to the 1000
points’ case whereas for the coupled system with ν = 0.02,
there was a decreasing phase of JDistEn from k = 0.03 to 0.07.
It was noted that both XCE and JDistEn indicated an inversely
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Fig. 2. Estimation of coupling for the identical coupled Rössler system (ν = 0). Panels in the upper row show the plot of response observable versus drive
observable values, with each coupling strength marked at the top-right corner. Middle panels show the results estimated by XSampEn (b1), XCE (b2), JENT (b3),
and JDistEn (b4), respectively, with data length of 1000 points. Lower panels show the estimation results of the four methods, but with the data length used for the
estimation decreased to just 100 points. Only partial results for XSampEn are shown in (c1), because invalid results were constantly produced for the other parts.

varying trend from k = 0.03 to 0.07. This could be linked with
the standard deviations of both XCE and JDistEn with k val-
ues that were significantly larger than their neighboring val-
ues, as shown in Fig. S3(b2) and (b4) from the results using
1000 points. Thus, it may be worth exploring what happened
in the dynamics of the almost identical coupled Rössler system
with those k values. Nevertheless, the results again suggest that,
for the coupled Rössler system, JDistEn was superior to the
other three methods for detecting weak coupling.

B. Evaluation of Coupled NMM

1) Model Description: Although the coupled Rössler sys-
tem was useful to test the performance of different methods in
the theoretical domain, it does not provide any specific physio-
logical meaning. We next employed the NMM developed from
the mean activity of a whole neuronal population [32]. This
model provides the possibility to understand general features
of macroscopic brain signals, such as EEG in the field of neu-
roscience. NMM can model different EEG kinetics by simply
tuning the state variables, and hence, can produce various waves,
ranging from delta to gamma. David and Friston introduced a
weight parameter to control the relative contributions of fast
(e.g., gamma) and slow (e.g., alpha) populations in order to
produce waves with dual kinetics. This scheme can be easily

implemented to produce multiple kinetics to mimic real-world
EEG data [33]. Nonlinear coupling is further generated by in-
troducing the output of one “distant” area as part of the input
while feeding the output of the current area back to the distant
one [33]. Both outputs are scaled by a coupling parameter k
prior to transmitting to other areas so as to simulate bivariate se-
ries with different coupling strengths. The details of the coupled
dual-kinetics NMM and its simulation approach are provided in
the Online Supplement.

2) Estimation of Coupling Strength: Similarly to our find-
ings with coupled Rössler system, we observed variations in
XSampEn, XCE, JENT, and JDistEn with k varied from zero
(uncoupled dynamics) to 1 (completely coupled dynamics) in
steps of 0.05. The embedding dimension m and time delay τ
were determined by the differential entropy-based method [31],
which suggested m = 4 and τ = 5 for both channels (see On-
line Supplement). The threshold was r = 0.15 for XSampEn,
quantization level ξ = 6 for XCE, and minimum diagonal line
length lmin = 2 for JENT.

3) Effect of Data Length: The coupling analysis in Section
III-B-2 was reperformed on the dual-kinetics NMM with all
observables restricted to the first 100 sampling points.

It should be noted here that the sensitivities of the four meth-
ods were quantified directly using the evaluation results in Sc-
tions III-B-2 and III-B-3. We did not perform weak coupling
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Fig. 3. Estimation of coupling for the coupled dual-kinetics NMM. Panels in the upper row show the plot of the second simulated EEG channel versus the
first channel, with each coupling strength marked at the top-right corner. Middle panels show the results estimated by XSampEn (b1), XCE (b2), JENT (b3), and
JDistEn (b4), respectively, with data length of 1000 points. Lower panels show the estimation results of the four methods, but with the data length used for the
estimation restricted to 100 points. Only partial results for XSampEn and JENT are shown in (c1) and (c3), because invalid results were constantly produced for
the other parts. Asterisks in (b2), (b4), (c2), and (c4) indicate the critical coupling strengths k95 with each specific value marked in the top-right corner.

simulation with fine steps as we did for the coupled Rössler sys-
tem because the dynamics changed very weakly for a variation
of 0.05 (simulation step we used for the coupled dual-kinetics
NMM) in coupling strength, and another important reason was
that the simulation of the coupled dual-kinetics NMM was time
consuming.

4) Evaluation Results on the Coupled Dual-Kinetics NMM:
Fig. 3 incorporates the results of the four methods with variations
of k (middle panel). For a visual expression of the coupled
dynamics, we also show the EEG from the second channel
plotted versus the first in the upper panel of Fig. 3.

a) Coupling Estimation With 1000 Sampling Points:
XSampEn and JENT both showed acceptable performance for
only strong coupling dynamics, as shown in Fig. 3(b1) to (b3).
For weak coupling cases, XSampEn showed great fluctuations
among different realizations and the average level decreased
with the coupling strength k after an initial increase stage, which
was very similar to its behavior for both coupled Rössler sys-
tems. JENT only showed sensitive to strong coupling since it
appeared invalid for all k ≤ 0.7. XCE showed a negative relation
to k, but the relationship appeared nonlinear since it decreased
faster for strong coupling. For weak coupling dynamics, XCE
seemed to have poor discrimination between different coupling

strengths. By comparison, the proposed JDistEn showed a lin-
early positive relation to k with good discrimination for not
only strong coupling dynamics but also weak coupling cases.
The sensitivity analysis further confirmed this improvement,
which suggested a critical value k95 = 0.15 for XCE and an im-
proved critical value k95 = 0.1 for JDistEn. This phenomenon
also supports our sensitivity analysis described in Section A,
showing that XCE generally performs well for strong coupling
dynamics but is not suitable for detecting weak coupling.

b) Coupling Estimation With 100 Sampling Points: Cou-
pling performance from the four methods with a data length of
100 points is shown in the lower panel of Fig. 3. XSampEn and
JENT only showed sensitive to strong coupling dynamics. They
both yielded invalid results for weak coupling cases. Although
XCE showed acceptable performance with k ≥ 0.7, its distin-
guishability for weak coupling was worsened by the lack of
data samples, as shown in Fig. 3(c2), which suggests a critical
coupling strength k95 = 0.65. Our proposed JDistEn showed
good performance for all coupling strengths with only a small
increase in the critical value (from 0.1 for the 1000 points’ case
to 0.15), as shown in Fig. 3(c4).

It can therefore be concluded from these simulation studies
that the three traditional methods—XSampEn, XCE, and
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Fig. 4. Estimation of coupling for the rat EEG data with different analyzing window lengths. WL = window length.

JENT—generally perform well for strong coupling dynamics
but are usually not suitable for detecting weak coupling.
JDistEn showed comparable performance for strong cou-
pling dynamics. More promisingly, it showed significant
improvement in sensitivity for detecting weak coupling. This
superiority is obvious even with short series. However, the
coupling direction has not been considered in our simulation.
The current algorithm for JDistEn may not be able to reflect
the coupling direction, which should be a potential limitation
(among the four, only XCE can [16]).

It should be noted that in using all four methods, we did
not obtain zero values for uncoupled dynamics (k = 0). This
is quite different from the methods for generalized synchro-
nization [8] or phase synchronization [11] and traditional linear
methods such as crosscorrelation. The nonzero values resulted
from the complex structural information that still exists in the
state space of uncoupled dynamics. In addition, those values
are not necessarily the same for different uncoupled dynamics
(simply because the structures of their state spaces are different
from each other); hence, their changes relative to the uncoupled
dynamics are in fact of more value than their absolute levels.
Anyway, this problem may indicate an undesirable specificity of
those methods. The use of surrogate data analysis could allow
the investigation of the specificity [12]. Another applicable way
could be to derive a special coupling measure based on JDistEn
as has done for XCE (where a derived coupling measure was
defined as the conditional entropy of target series subtracted by
XCE) [16].

IV. EVALUATION OF EXPERIMENTAL DATA

A. Coupling Analysis Between Bivariate Rat EEG Data

Abnormal spike discharges in EEG have been recognized as
a prominent feature of incipient epileptic seizures, and these
discharges are usually coupled among cortical areas [34]. It is
thus of great clinical significance to estimate coupling from EEG
data. In this section, we describe how our proposed JDistEn was
tested on a publicly available rat EEG database which includes
both normal EEG data and data containing spike discharges [35].

1) Rat EEG Database: The database is composed of five
pairs of EEG recordings from electrodes placed on the left and
right frontal cortex of male adult WAG/Rij rats (a genetic animal
model of human epilepsy). Signals have already been filtered
between 1∼100 Hz and digitized at 200 Hz [34, 36]. Among
the five recordings, set a is from a normal case, and sets b
to e are from four cases with spike discharges. The first three
cases were used and investigated in this study since there is
a priori information regarding their coupling levels according
to several published investigations [23], [34], [36]. Set b is the
most synchronized with the highest coupling between channels.
Set a has been shown to have an overall higher coupling strength
than set c, as suggested by both linear and nonlinear methods
[34]. It is expected that a good method should be able to detect
their coupling differences. Furthermore, set b shows a transition
from ictal (with spike discharges) to interictal (no spike) periods
at the final stage of the recording, which is also expected to be
detected.

2) Estimation of Coupling Strength: The four methods
(XSampEn, XCE, JENT, and JDistEn) were applied directly
to the three pairs of EEG recordings. Additionally, although
there is a priori information on the overall coupling strengths
among the three datasets, there is currently no information on
their coupling status given a specific time window. To elucidate
the concerns rigorously, we also performed coupling analysis on
sections with different lengths. Specifically, the measures were
performed on each of the three pairs of EEG recordings using a
moving time window of 500, 200, and 100 points, respectively,
with 99% overlap between subsequent windows.

The m and τ were set at 2 and 4, respectively, according to the
differential entropy-based method [31] (see Online Supplement
for more information). The threshold r was set at 0.25 (a larger
r can, to some extent, avoid the presence of invalid ln 0 when
the data length was relatively small) for XSampEn, ξ at 6 for
XCE, and lmin at 2 for JENT.

3) Evaluation Results for Rat EEG Data: Fig. 4 incorporates
the performance of the four methods on rat EEG data with
different analyzing window lengths. Among the four methods,
only JDistEn correctly ranked their overall coupling differences
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[34]. According to the study by Quian Quiroga et al. [34], the
weak coupling in set c may be caused by the large time lag
between spikes. In addition, because of the random appearance
of set a, it is also difficult to estimate the level of coupling
solely by visual inspection. However, we can observe some
patterns within specific time windows appearing simultaneously
between channels in both sets.

The results confirmed the above concern, as suggested in
Fig. 4. Despite the fact that XSampEn and XCE still indicated
highest coupling in set a, they both failed to differentiate be-
tween sets b and c as the window length decreased to 500 points
or less. JENT performed better as compared with XSampEn
and XCE since it could still make a clear distinction among the
three datasets as the window length decreased to 500 points.
But it constantly resulted in invalid results for set a with shorter
window lengths (200 and 100), although it could still tell the
difference between sets b and c. JDistEn performed best since it
could separate the three datasets out for all lengths of analyzing
windows. However, despite the fact that highest coupling in set
b was indicated for all window lengths, the estimated coupling
strengths in set a and set c were not in the same order—for win-
dow length equaling 1000 (whole recording) and 500, JDistEn
suggested that set a had higher coupling than set c, whereas for
window lengths of 200 and 100 points, the coupling in set c was
stronger. This stronger average coupling in set c may be intro-
duced by the synchronized spike-like patterns within some time
windows. Thus, JDistEn analysis for extremely short EEG data
has potential, since we can expect that transient synchronized
spike discharges very likely cannot be detected by longtime
analysis.

An accurate detection of a transition from interictal to ictal
may help physicians notice an incipient epileptic attack. JDis-
tEn can potentially play an important role in such an application.
Set b showed a perfect reverse transition from interictal to ic-
tal period at its final stage, as shown in Fig. 5. JDistEn could
accurately detect this transition indicated by a clear decrease.
Note that JENT also showed a decreased value within this tran-
sition phase. Its main disadvantage is that it constantly resulted
in invalid values for set a.

B. Coupling Analysis Between RRI and DTI Data

The RRI extracted from electrocardiograms (ECGs) has been
widely applied to investigate cardiovascular autonomic regu-
lation [37]. An RRI is physiologically composed of two com-
plementary mechanical intervals which indicate separately the
duration of the cardiac systolic and diastolic phases. As a re-
sult, the RRI can be decomposed into a systolic time interval
series (STI) and a DTI. In addition, the beat-to-beat fluctuation
in RRI is preferentially expressed in DTI, since the STI remains
relatively stable to support periphery tissues steady-going blood
supplies. In addition to the RRI analysis, the coupling between
RRI and DTI has been reported in healthy elderly subjects [38],
heart failure (HF) patients [39], and patients with diabetic auto-
nomic neuropathy [40]. In this study, the RRI-DTI coupling in
HF patients in comparison with healthy volunteers was exam-
ined to investigate the suitability of JDistEn in such applications.

Fig. 5. EEG signals (sets a, b, and c, shown only episodes from 3 to 5 s each)
from right and left cortical intracranial electrodes (upper panel) and the time
evolution of XSampEn, XCE, JENT, and JDistEn (calculated every 100 points)
for each set (lower four panels). EEG data channels are plotted with offsets
for better visualization. Vertical bars indicate a transition in set b from ictal to
interictal phase.

1) RRI and DTI Data: The RRI and DTI data in this study
were derived from simultaneously recorded ECG and radial
artery pressure pulse signals (5-min long) measured by a Cardio-
vascular Function Detection Device (CV FD-I, Jinan Huiyirong-
gong Co., Ltd, China). This study received a full ethical approval
from the Qilu Hospital of Shandong University. Thirty-four HF
patients and 33 healthy volunteers were recruited, matched by
age and gender. Table I shows their basic clinical characteris-
tics. Detailed clinical information with the measurement pro-
tocol and signal preprocessing approaches can be found in our
previous publication [28].

Briefly, the R waves of the ECG signal, as well as the systolic
feet and dicrotic notches of arterial pulse signals, were detected
by customized MATLAB software. The DTI was constructed
from the interval between the dicrotic notch and the systolic
foot in the subsequent cycle. Anomalous intervals arising from
ectopic beats or poor signal quality were filtered out prior to the
following coupling analyses [28], [38], [39]. Fig. 6 shows an
example of the construction of RRIs and DTIs from a healthy
volunteer and an HF patient.
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Fig. 6. Construction of RRIs and DTIs from ECGs and RAP signals (top panel). The 5 min RRI and DTI series are shown in the bottom panel. Left panel is
from a healthy volunteer (age: 65, sex: male) and right panel from a HF patient (age: 68, sex: male).

TABLE I
PHYSIOLOGICAL CHARACTERISTICS FOR HEALTHY VOLUNTEERS

AND HF PATIENTS

Variables Healthy volunteers HF patients p value

No. 33 34 −
Men 18 21 0.55
Age (years) 56 ± 8 59 ± 9 0.29
BMI (kg/m2) 24 ± 3 25 ± 4 0.16
SBP (mmHg) 114 ± 13 118 ± 14 0.23
DBP (mmHg) 72 ± 9 75 ± 9 0.18
LVEF (%) 65 ± 4 39 ± 7 <0.01

Data are expressed as number or mean ± standard deviation.
No. = number, BMI = body mass index, SBP = systolic blood
pressure, DBP = diastolic blood pressure, LVEF = left ventricular
ejection fraction.

2) RRI-DTI Coupling Analysis: The proposed JDistEn and
the traditional XSampEn, XCE, and JENT methods were all
performed for the RRI-DTI series. The input parameters m and
τ were set at 2 and 3, respectively, for both the RRI and DTI
series (see Online Supplement). The threshold value r was set
at 0.25 for XSampEn, quantization level ξ at 6 for XCE, and
diagonal length lmin at 2 for JENT. Statistical analysis was
performed to compare the coupling difference between the two
groups using the Mann–Whitney U test. Statistical significance
was accepted at p < 0.05. All statistical analyses were performed
using SPSS software (Ver. 20.0, IBM, Armonk, NY, USA).

3) Results for RRI-DTI Coupling Analysis: As shown in
Fig. 6, for both the healthy subject and HF patient, RRI and
DTI time series changed in a similar pattern, indicating strong
coupling dynamics. Their coupling difference is therefore dif-
ficult to detect visually. By employing our proposed JDistEn

Fig. 7. Estimation of coupling between RRI and DTI data for healthy volun-
teers and HF patients. Shown are ensemble results for each method in terms
of median value plus interquartile range. JENT constantly resulted in invalid
values; thus no ensemble result is shown.

and the other three methods, as shown in Fig. 7, XSampEn
could not distinguish between the two groups, indicating its
poor performance for short data. JENT consistently resulted in
invalid values for both groups (over 30% for healthy subjects
and 75% for HF patients). The appearance of those invalid re-
sults may be due to the lack of diagonal lines introduced by
both the short data length and the thresholding procedure. Both
XCE and our proposed JDistEn showed statistically significant
change, which supports the finding from our simulation stud-
ies that JDistEn yields a comparable performance for detecting
strong coupling. In addition, the significantly increased XCE
and decreased JDistEn in HF patients both suggested a loss of
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RRI-DTI coupling with HF, which would be applicable for the
noninvasive evaluation of cardiovascular autonomic control.

V. DISCUSSION

A. Further Explanation of JDistEn

We have previously reported the performance of DistEn on a
short univariate dataset [28]. The ePDF estimation from all the
intervector distances, which is a global quantification approach,
is thought to account for this improvement. The JDistEn
algorithm proposed in this study inherited this advantage;
therefore, a good performance for small bivariate datasets is
expected. The evaluations in this study using simulation models
and experimental data have supported this assumption.

The use of the distribution of all intervector distances is one
noticeable advantage of DistEn and JDistEn. However, there
is another published study employed similar type of estimation
based on delay vectors [41]. This so-developed “delay vector
variance (DVV)” algorithm spans the distribution of pairwise
distances between not only delay vectors but also the targets of
delay vectors (the following sample of a certain delay vector)
in order to examine the local predictability. The algorithm has
proved to be capable of robustly detecting determinism and
nonlinearity in time series using both synthetic and real-world
standard signals [41]. A further comparison between our
method and DVV should be of significance which, however,
has scheduled in our future worklists.

Another crucial aspect of JDistEn is the construction of
the distance matrix from both data channels. The approach in
(4) was used to construct a joint distance matrix through the
complementary set of the geometric mean of all complementary
sets of the (univariate) distance matrices from different data
channels. Under a microscopic perspective, JDistEn is screened
by the difference among the distances of the corresponding
pairs of vectors from different data channels (see Fig. S4 for
a geometric explanation of the idea behind the joint distance
matrix). The joint distance matrix will be equal to any univariate
matrix when all data channels are completely coupled. In this
case, JDistEn will be the same as DistEn for any data channel.
Therefore, coupling analysis from JDistEn is not an absolute
estimate. Result of JDistEn relates to the complexity of all
data channels or the intrinsic property of the system being
analyzed. Comparison of JDistEn results for different dynamics
should be of meaningless. We have illustrated this concern in
our simulation studies. However, the correspondence between
coupling degree and complexity could be a potential limitation
since in particular cases perfectly coupled dynamics may alter
their intrinsic complexity. The three comparison algorithms
have the same property—their relative changes provide much
more meaningful information than their absolute values.

In addition, the joint distance matrix is initially defined for a
bivariate case. The extension to a multivariate case will be very
straightforward by redefining (4) in a multiple channel way, that
is,

JD = J − ψ

√∏
(J − Dϕ ) (11)

where again, J indicates the all-ones matrix and Dϕ the dis-
tance matrix of channel ϕ (ϕ = 1, 2, . . . , ψ). The performance
of this multivariate extension form of JDistEn for analyzing
multichannel data will thus deserve further elucidation. One
potential comparison algorithm will be multivariate sample en-
tropy [18, 19].

It may also be acceptable to directly apply the geometric
mean of all univariate distance matrices (i.e., JD = ψ

√∏
Dϕ ).

However, this version of joint distance matrix may introduce
bias when zero occurs. For example, one distance is 0.9 and the
corresponding one from another channel is zero; the geometric
mean will be zero, which mistakenly treats them as belong-
ing to the same neighbor. However, using the joint distance of
0.68 (1 −

√
(1 − 0) × (1 − 0.9) ≈ 0.68), a rational correction

is provided to the bias.
Furthermore, JD can be converted to the joint recurrence

plots by thresholding each Dϕ first in (4) by the threshold pa-
rameter r [20]. It has been noticed, in some previous studies on
the quantification of joint recurrence plots, that the distance ma-
trix was introduced and named as an unthresholded recurrence
plot, a global recurrence plot, or similarly as a distance plot [17].
However, to the best of our knowledge, it is most often applied
as a qualitative tool rather than a quantitative method.

B. Application Perspective

We demonstrated good performance of JDistEn on bivariate
rat EEG data. The results agreed with our simulation study that
the traditional methods, including XSampEn, XCE, and JENT,
failed to track the weak coupling changes when small datasets
were used. The traditional coupling methods may be capable
when a sufficiently large dataset is available. However, such
methods of post hoc analysis after collecting “enough” data are
less practical in a real clinical setting. For example, physicians
should be warned by a change in these coupling measures that
a patient being monitored may have an epileptic attack. With
JDistEn, it is possible to be noticed by the physicians almost
immediately after the epileptic seizure (e.g., in Fig. 5, a 0.5 s
time window can support a sensitive detection). Our results also
showed that screening the JDistEn profiles may reveal the evolu-
tion of coupling with time. With this information, the prediction
of future events is possible. This is also one of the reasons that
this study focused on the short-term application.

Furthermore, JDistEn was applied to evaluate short-term RRI-
DTI coupling. RRI analysis has been accepted as a useful tool
for assessing the cardiovascular control mechanism. However,
how to robustly estimate the RRI features within a short screen-
ing time remains a significant challenge, partly because the
linear time- or frequency-domain approaches are limited by the
nonstationary nature of the RRI series, and the traditional non-
linear measures require a sufficiently large dataset. This defect
limits the application of using short-term RRI and DTI in various
biomedical applications where long-term data collecting cannot
be done. The validation results on human clinical data showed
a significantly reduced JDistEn of RRI-DTI in HF patients,
suggesting JDistEn very promising for examining short-term
cardiovascular control mechanism in clinical practice.



LI et al.: DETECTION OF COUPLING IN SHORT PHYSIOLOGICAL SERIES BY A JOINT DISTRIBUTION ENTROPY METHOD 2241

VI. CONCLUSION

A novel JDistEn method was developed in this study for the
detection of coupling in short physiological series. Both simu-
lation and experimental studies proved that JDistEn has remark-
ably higher sensitivity for detecting weak coupling especially
for short series. This study suggests that our proposed JDistEn
should be promising for continuous and even real-time moni-
toring of coupling in physiological signals in clinical practice.

ACKNOWLEDGMENT

P. Li thanks Dr. Norbert Marwan from the Potsdam Institute
for Climate Impact Research, Potsdam, Germany, for providing
access to the crp toolbox [42]. The authors would like to thanks
the anonymous reviewers for their constructive comments that
greatly contributed to improving the quality of our paper.

REFERENCES

[1] L. Faes et al., “Information dynamics of brain–heart physiological net-
works during sleep,” New J. Phys., vol. 16, no. 10, pp. 105005-1–105005-
20, 2014.

[2] R. P. Bartsch et al., “Phase transitions in physiologic coupling,” in Proc.
Nat. Acad. Sci. USA., vol. 109, no. 26, pp. 10181–10186, 2012.

[3] J. Lee et al., “Transfer entropy estimation and directional coupling change
detection in biomedical time series,” Biomed. Eng. Online, vol. 11, no. 1,
pp. 19-1–19-17, 2012.

[4] P. Lowdon et al., “Heart rate and blood pressure interactions during at-
tempts to consciously raise or lower heart rate and blood pressure in
normotensive subjects,” Physiol. Meas., vol. 32, no. 3, pp. 359–367, 2011.

[5] L. Faes et al., “Information domain approach to the investigation of cardio-
vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings,”
Front. Physiol., vol. 2, pp. 80-1–80-13, 2011.

[6] J. Dauwels et al., “A comparative study of synchrony measures for the
early diagnosis of Alzheimer’s disease based on EEG,” NeuroImage,
vol. 49, no. 1, pp. 668–693, 2010.

[7] L. Faes et al., “Measuring connectivity in linear multivariate processes:
Definitions, interpretation, and practical analysis,” Comput. Math. Meth-
ods Med., vol. 2012, no. 140513, pp. 140513-1–140513-18, 2012.

[8] N. F. Rulkov et al., “Generalized synchronization of chaos in directionally
coupled chaotic systems,” Phys. Rev. E, vol. 51, no. 2, pp. 980–994, 1995.

[9] S. J. Schiff et al., “Detecting dynamical interdependence and generalized
synchrony through mutual prediction in a neural ensemble,” Phys. Rev.
E, vol. 54, no. 6, pp. 6708–6724, 1996.

[10] M. G. Rosenblum et al., “Identification of coupling direction: application
to cardiorespiratory interaction,” Phys. Rev. E, vol. 65, no. 4 Pt 1, pp.
041909-1–041909-11, 2002.

[11] M. G. Rosenblum et al., “Phase synchronization of chaotic oscillators,”
Phys. Rev. Lett., vol. 76, no. 11, pp. 1804–1807, 1996.

[12] D. A. Smirnov and R. G. Andrzejak, “Detection of weak directional cou-
pling: Phase-dynamics approach versus state-space approach,” Phys. Rev.
E, vol. 71, no. 3 Pt 2A, pp. 036207-1–036207-13, 2005.

[13] K. S. Nikita et al., “Editorial: Special issue on mobile and wireless tech-
nologies for healthcare delivery,” IEEE Trans. Biomed. Eng., vol. 59, no.
11, pp. 3083–3089, Nov. 2012.

[14] S. M. Pincus et al., “Older males secrete luteinizing hormone and testos-
terone more irregularly, and jointly more asynchronously, than younger
males,” Proc. Nat. Acad. Sci. USA., vol. 93, no. 24, pp. 14100–14105,
1996.

[15] T. Zhang et al., “Cross-sample entropy statistic as a measure of complexity
and regularity of renal sympathetic nerve activity in the rat,” Exp. Physiol.,
vol. 92, no. 4, pp. 659–669, 2007.

[16] A. Porta et al., “Conditional entropy approach for the evaluation of the
coupling strength,” Biol. Cybern., vol. 81, no. 2, pp. 119–129, 1999.

[17] N. Marwan et al., “Recurrence plots for the analysis of complex systems,”
Rhys. Rep., vol. 438, nos. 5/6, pp. 237–329, 2007.

[18] M. U. Ahmed and D. P. Mandic, “Multivariate multiscale entropy analy-
sis,” IEEE Signal Process. Lett., vol. 19, no. 2, pp. 91–94, Feb. 2012.

[19] M. U. Ahmed and D. P. Mandic, “Multivariate multiscale entropy: A tool
for complexity analysis of multichannel data,” Phys. Rev. E, vol. 84, no. 6
Pt 1, pp. 061918-1–061918-10, 2011.

[20] M. C. Romano et al., “Multivariate recurrence plots,” Phys. Lett. A,
vol. 330, nos. 3/4, pp. 214–223, 2004.

[21] N. Marwan, “How to avoid potential pitfalls in recurrence plot based data
analysis,” Int. J. Bifurcation Chaos, vol. 21, no. 4, pp. 1003–1017, 2011.

[22] P. Li et al., “Testing pattern synchronization in coupled systems through
different entropy-based measures,” Med. Biol. Eng. Comput., vol. 51,
no. 5, pp. 581–591, 2013.

[23] H. Xie et al., “A comparative study of pattern synchronization detec-
tion between neural signals using different cross-entropy measures,” Biol.
Cybern., vol. 102, no. 2, pp. 123–135, 2010.

[24] S. M. Pincus, “Approximate entropy as a measure of system complexity,”
in Proc. Nat. Acad. Sci. USA., vol. 88, no. 6, pp. 2297–2301, 1991.

[25] J. S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” Amer. J. Physiol. Heart
Circ. Physiol., vol. 278, no. 6, pp. H2039–H2049, 2000.

[26] A. Porta et al., “Entropy, entropy rate, and pattern classification as tools
to typify complexity in short heart period variability series,” IEEE Trans.
Biomed. Eng., vol. 48, no. 11, pp. 1282–1291, Nov. 2001.

[27] C. L. Webber Jr and J. P. Zbilut, “Recurrence quantification analysis of
nonlinear dynamical systems,” in Tutorials in Contemporary Nonlinear
Methods for the Behavioral Sciences, M. A. Riley and G. V. Orden, Eds.
Arlington, VI, USA: Nat. Sci. Found., 2005, pp. 26–94.

[28] P. Li et al., “Assessing the complexity of short-term heartbeat interval
series by distribution entropy,” Med. Biol. Eng. Comput., vol. 53, no. 1,
pp. 77–87, 2015.

[29] D. P. Doane, “Aesthetic frequency classifications,” Amer. Statist., vol. 30,
no. 4, pp. 181–183, 1976.

[30] Z. Zheng and G. Hu, “Generalized synchronization versus phase synchro-
nization,” Phys. Rev. E, vol. 62, no. 6, pp. 7882–7885, 2000.

[31] T. Gautama et al., “A differential entropy based method for determining
the optimal embedding parameters of a signal,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2003, vol. 6, pp. 29–32.

[32] B. Jansen and V. Rit, “Electroencephalogram and visual evoked potential
generation in a mathematical model of coupled cortical columns,” Biol.
Cybern., vol. 73, no. 4, pp. 357–366, 1995.

[33] O. David and K. J. Friston, “A neural mass model for MEG/EEG: coupling
and neuronal dynamics,” NeuroImage, vol. 20, no. 3, pp. 1743–1755, 2003.

[34] R. Quian Quiroga et al., “Performance of different synchronization mea-
sures in real data: A case study on electroencephalographic signals,” Phys.
Rev. E, vol. 65, no. 4, pp. 041903-1–041903-14, 2002.

[35] R. Quian Quiroga. EEG, ERP and single cell recordings database. [On-
line]. Available: http://www.vis.caltech.edu/∼rodri/data.htm

[36] R. Quian Quiroga et al., “Event synchronization: A simple and fast method
to measure synchronicity and time delay patterns,” Phys. Rev. E, vol. 66,
no. 4, pp. 041904-1–041904-9, 2002.

[37] G. Ernst, “The autonomic nervous system,” in Heart Rate Variability,
G. Ernst, Ed. London, U.K.: Springer-Verlag, 2014. pp. 27–49.

[38] P. Li et al., “Age related changes in variability of short-term heart rate and
diastolic period,” in Proc. Comput. Cardiol. Conf., 2013, pp. 995–998.

[39] P. Li et al., “Coupling between short-term heart rate and diastolic period
is reduced in heart failure patients as indicated by multivariate entropy
analysis,” Comput. Cardiol., vol. 41, no. 7042988, pp. 97–100, 2014.

[40] M. H. Imam et al., “Analysing cardiac autonomic neuropathy in diabetes
using electrocardiogram derived systolic-diastolic interval interactions,”
Comput. Cardiol., vol. 41, 7042985, pp. 85–88, 2014.

[41] T. Gautama et al., “The delay vector variance method for detecting de-
terminism and nonlinearity in time series,” Physica D, vol. 190, nos. 3/4,
pp. 167–176, 2004.

[42] N. Marwan. Cross recurrence plots toolbox. [Online]. Available: http://
tocsy.pik-potsdam.de/CRPtoolbox/install.php

Peng Li (M’15) was born in Weishan, Shandong
Province, China, in 1988. He received the B.S. and
the Ph.D. degrees in biomedical engineering from
Shandong University, Jinan, China, in 2009 and 2014,
respectively.

He is currently a Postdoctoral Research Fellow
with the School of Control Science and Engineer-
ing, Shandong University. His research interests in-
clude nonlinear analysis of cardiovascular dynamics,
novel time-series analysis methods from nonlinear
dynamics and statistical physics, and novel noninva-

sive techniques for evaluating the cardiovascular function.



2242 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 11, NOVEMBER 2016

Ke Li (M’15) received the B.S. degree in information
engineering from Zhejiang University, Hangzhou,
China, the M.S. degree in biomedical engineering
from Shandong University, Jinan, China, and the
Ph.D. degree in biomedical engineering from Uni-
versity of Technology of Troyes, Troyes, France, in
2003, 2006, and 2010, respectively.

He was a Research Assistant with the Institute
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