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Abstract The poor quality of wireless electrocardiography

(ECG) recordings can lead to misdiagnosis and waste of

medical resources. This study presents an interpretation of

Lempel–Ziv (LZ) complexity in terms of ECG quality

assessment, and verifies its performance on real ECG sig-

nals. Firstly, LZ complexities for typical signals, namely

high-frequency (HF) noise, low-frequency (LF) noise,

power-line (PL) noise, impulse (IM) noise, clean artificial

ECG signals, and ECG signals with various types of noise

added (ECG plus HF, LF, PL, and IM noise, respectively)

were analyzed. Then, the effects of noise, signal length,

and signal-to-noise ratio (SNR) on the LZ complexity of

ECG signals were analyzed. The simulation results show

that LZ complexity for HF noise was obviously different

from those for PL and LF noise. The LZ value can be used

to determine the presence of HF noise. ECG plus HF noise

had the highest LZ values. Other types of noise had low LZ

values. Signal lengths of over 40 s had only a small effect

on LZ values. The LZ values for ECG plus all types of

noise increased monotonically with decreasing SNR except

for LF and PL noise. For the test of real ECG signals plus

three types of noise, namely muscle artefacts (MAs),

baseline wander (BW), and electrode motion (EM) arte-

facts, LZ complexity varied obviously with increasing MA

but not for BW and EM noise. This study demonstrates that

LZ complexity is sensitive to noise level (especially for HF

noise) and can thus be a valuable reference index for the

assessment of ECG signal quality.

Keywords Electrocardiography (ECG) � Lempel–Ziv (LZ)

complexity � Signal quality assessment � Signal-to-noise

ratio (SNR)

1 Introduction

Electrocardiography (ECG) recordings are often contami-

nated by various types of noise, including movement

artefacts, power-line (50 or 60 Hz) noise, and muscular

electrical activity. The presence of this noise can render the

signals unsuitable for clinical use, wasting the resources

utilized for their acquisition [1]. Assessing the quality of

ECG signals would be extremely helpful with this regard.

The increasing use of mobile devices for acquiring ECG

signals has recently driven research interest towards the

problem of assessing the signal quality of ECG recordings

[2–5]. Existing methods are mostly based on the charac-

terization of time or frequency features of the signals.

Time-based methods aim to identify particular character-

istics, such as RR time interval outliers [6], flat lines,

baseline wander (BW), and steep slopes [7], which usually

can compromise recordings. Frequency-based methods use,

for example, the ratio between the low- and high-frequency

power of the signal [8]. A method that combines time and

frequency information has also been proposed [9, 10]. Non-
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linear methods, such as entropy measures, have also been

explored for this application but need further investigation

[11, 12].

Lempel–Ziv (LZ) complexity [13–15] is a measure of

the complexity of a signal. It has been applied to a variety

of biomedical signals, including ECG from patients with

ventricular tachycardia or atrial fibrillation [16, 17], heart

sound signals from patients with cardiovascular disease

[18], electroencephalograms (EEG) from patients with

Alzheimer’s disease [19, 20], EEG sleep signals [21], and

brain function [22]. Aboy et al. [23] analysed the LZ

complexity of periodic signals, Gaussian white noise, and

colored noise. However, how typical types of noise affect

the LZ complexity of ECG recordings, and the relationship

between the LZ complexity and noise level, have not yet

been systematically studied.

The aim of this study was to characterize the LZ com-

plexity of various ECG signals (noise-free and noisy) and

to assess the effects of noise type on the LZ complexity of

ECG signals.

2 Materials and Methods

2.1 Database

2.1.1 Artificial ECG Signals

Clean artificial ECG signals were generated using the open

source ECGSYN software, as described by McSharry et al.

[24]. The sample rate was set at 360 Hz. The heart rate was

set to be within the range of 50–100 beats per minute

(bpm). Four types of noise were separately added to the

clean ECG signals: 50–180 Hz high-frequency (HF) noise;

50 Hz power-line (PL) noise; 0–0.5 Hz low-frequency

(LF) noise; and impulse (IM) noise. HF noise was used to

simulate muscular electrical activity and other HF noise. In

order to avoid the overlap of the frequency range of HF

noise and the main frequency range of ECG, 50–180 Hz

was chosen (the upper end of the range was determined at a

sample rate of 360 Hz). PL noise was used to simulate

noise from the mains. LF noise was used to simulate BW

because its frequency range overlaps with 0–0.5 Hz

[25, 26]; it can approximately be regarded as an electrode

motion artefact with a significant amount of BW [27]. IM

noise was used to simulate the spikes with high amplitudes

contained in ECG signals. To generate IM noise, the zero

sequence was replaced by various percentages of random

spikes. To generate HF noise, Gaussian noise was firstly

generated and then filtered by a band-pass filter

(50–180 Hz). To generate LF noise, Gaussian white noise

was firstly generated and then filtered by a low-pass filter

(0–0.5 Hz).

2.1.2 Real ECG Signals

Real ECG signals were selected from the Massachusetts

Institute of Technology Beth Israel Hospital (now the Beth

Israel Deaconess Medical Centre) (MIT/BIH) arrhythmia

database [28, 29]. This database contains 48 ECG record-

ings, each with a duration of 30 min and a sample rate of

360 Hz. Baseline correction for removing the main LW

noise was performed because the BW noise contained in

the raw signals could lead to inaccurate results. The pro-

cessed ECG signals were used for further study.

Real noise signals taken from the Noise Stress Test

Database (NSTDB) [30] were used. NSTDB provides three

types of noise that can be typically found in ambulatory

ECG recordings: muscle artefacts (MA), electrode motion

(EM), and BW. Because NSTDB does not include 50-Hz

PL noise and IM noise, this study added these types of

noise to the real ECG signals for testing.

Both the MIT-BIH database and NSTDB are publicly

available through the Physionet website [29].

2.2 LZ Complexity

Before LZ complexity can be computed, the original signal

must be coarse-grained, and then transformed into a sym-

bols sequence for simplifying the computation. In previous

works, the binary (two-state) sequence was demonstrated

to adequately represent the LZ complexity of the original

signal [16, 23, 31]. For generating the two-state sequence,

the signal data were converted into a 0–1 sequence R by

comparison with the threshold Th. The binary symbolic

sequence R = {r(1), r(2),…, r(n)} was produced as

follows:

rðiÞ ¼ 0; if xðiÞ\Th
1; if xðiÞ� Th

�
; i ¼ 1; 2 � � � n ð1Þ

where n is the length of x(n). Usually, the mean value of

the sequence is used as the threshold Th [16, 32]. This was

thus done for the coarse-graining process in this study.

Following the initial coarse-graining process, the LZ

complexity c(n) for the symbol sequence R was computed.

The whole binary sequence R is scanned from left to right,

and the counter c(n) is increased by one unit when a new

subsequence (a new pattern) of consecutive characters is

encountered in the scanning process. The counter

c(n) conforms to the following rules [16, 23, 29]:

1. Let S and Q denote two strings, respectively, SQ be the

concatenation of S and Q, string SQp be derived from

SQ after its last character is deleted (p means the

operation to delete the last character in the string). Let

v(SQp) denote the vocabulary of all different sub-

strings of SQp. Initially, c(n) = 1, S = s1, and Q = s2,

and so SQp = s1.
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2. In summary, S = s1s2, …, sr, Q = sr?1, and so

SQp = s1s2, …, s; if Q belongs to v(SQp), then sr?1,

that is, Q is a substring of SQp, and so S does not

change. Update Q to be sr?1sr?2, and then judge

whether Q belongs to v(SQp). Repeat this process until

Q does not belong to v(SQp).

3. Now, Q = sr?1sr?2, …, sr?i, which is not a substring

of SQp = s1s2, …, srsr?1,…, sr?i-1, so increase c(n) by

one.

4. Thereafter, S is updated to be S = s1s2, …, sr?i, and

Q = sr?i?1.

Then, the procedure is repeated until Q is the last

character. At this time, the counter c(n) is the number of

different substrings contained in R, and it reflects the

number of different patterns in a sequence. c(n) might vary

with sequence length [17, 23]. Thus, in order to obtain a

complexity measure independent of the sequence length,

c(n) should be normalized [17, 23].

It has been proved that the upper bound of c(n) is:

cðnÞ\ n

ð1 � enÞ logaðnÞ
ð2Þ

where n is the length of the sequence and a is the number

of different symbols in the symbol set. In this study, a was

2 because the coarse-grained sequence was a 0–1 sequence.

en is a small quantity and en ? 0 (n ? ?). In fact:

lim
n!1

cðnÞ ¼ bðnÞ ¼ n

logaðnÞ
ð3Þ

c(n) can be normalized as:

CðnÞ ¼ cðnÞ
bðnÞ ð4Þ

where C(n) is the normalized LZ complexity, and denotes

the arising rate of new patterns within the sequence. A

detailed LZ complexity analysis can be found elsewhere

[23]. In this study, the normalized complexity C(n), rather

than c(n), is regarded as the result of LZ complexity.

2.3 LZ Complexity Analysis for ECG Signals

2.3.1 LZ Analysis for Typical Signals

The LZ complexity was calculated separately for some

typical signals, specifically various types of artificial signal

(HF, LF, PL, and IM noise and clean ECG) and noisy ECG

signals. In this test, IM noise was generated by replacing

10 % of the 40-s zero sequence with random spikes. For

each type of signal, 50 repeats were used to reduce the

effect of random factors. Each repeat lasted for 40 s. For

the synthetic noisy ECG signal, the signal-to-noise ratio

(SNR) is defined as:

SNR ¼ 10 � log10
Psignal

�
Pnoise

� �
ð5Þ

where Psignal and Pnoise denote the power of the clean ECG

and that of the noise, respectively.

In this test, the SNR of the synthetic ECG was set as

10 dB. By analysing the LZ values of these signals and

their statistics (i.e., the mean and standard deviation), we

tried to show typical LZ complexity values for the special

types of signals.

2.3.2 Effect of Signal Length on LZ Complexity

The effect of signal length on LZ complexity was tested

using the five types of signals: clean ECG signals and

synthetic ECG signals plus HF, PL, LF, and IM noise,

respectively. For each type of signal, the SNR of 10 dB

was used and the signal length was varied from 5 to 120 s,

in steps of 5 s. For each signal length, 50 repeats were

performed and the mean values and standard deviations

were determined for comparison. This effect analysis

aimed to determine a suitable signal length to obtain

stable LZvalues.

2.3.3 Effect of SNR on LZ Complexity

In this test, SNR was varied from -10 to 20 dB for each

type of signal, in steps of 5 dB. For each SNR level, 50

repeats were produced and the mean values and standard

deviations were calculated. To observe the mixed effect of

the various types of noise, all noise types were added to the

clean ECG signals. The mixed noise included HF, PL, LF,

and IM noise, with the same proportion (25 %) for each

noise type. For the SNR effect analysis, the optimal signal

length from the effect analysis of signal length was used.

Figure 1 gives examples of the artificial ECG signals,

namely the clean ECG signals and the synthetic noisy ECG

signals at various SNR levels, as well as their LZ values.

Figure 2 gives similar examples from the real ECG signals.

It is can be seen that the identifiability of ECG waveforms

decreases with decreasing SNR.

2.3.4 Receiver Operating Characteristic Curve

for Verification of LZ Complexity

For verification, we used the receiver operating character-

istic (ROC) curve to evaluate the performance of LZ com-

plexity for signal quality assessment. According to pre-

observations, the clean artificial ECG signals plus HF, LF, or

PL noise were identified as too noisy (unacceptable) for

clinical application when SNR was less than 5 dB. Similarly,

the threshold for the clean artificial ECG signals plus IM

noise was set as 0 dB. We set the threshold of 4.6 dB for
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classifying the clear artificial ECG plus mixed noise as

‘‘unacceptable’’ (SNR\= 4.6 dB) or ‘‘acceptable’’

(SNR[ 4.6 dB) in this study. The reason for choosing these

values is that the main waveform features (i.e., P, Q, and T

waves) of the corrupted ECGs could be identified when SNR

decreases below the specified thresholds. For the mixed-

noise-corrupted ECG, we observed that an SNR value of

between 4 and 5 dB can be used as the threshold. A threshold

of 4.6 dB was thus chosen based on the ROC analysis.

3 Results

3.1 LZ Values for Typical ECG Signals

Figure 3 shows the LZ results of the typical signals (i.e.,

HF, LF, PL, and IM noise, the clean ECG, and the clean

ECG plus HF, PL, LF, and IM noise, respectively) when

performing 50 repeat calculations for each type of signal.

HF noise showed the highest values of LZ complexity. LF
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noise had an LZ value of close to 0.1, and the clean ECG

had a slightly lower LZ than that of LF noise. PL noise had

the lowest LZ value.

We also calculated the mean values and standard devi-

ations of the 50 repeats for each type of signal with SNR

set to 10 dB. These values are shown in Table 1.

3.2 Effect of Signal Length

Figure 4 shows the effects of signal length on LZ com-

plexity for the artificial ECG signals. The LZ complexity

decreased with increasing signal length when the signal

length was shorter than 20 s. When the signal length was

longer than 40 s, the LZ complexity remained stable for all

of signal types. Therefore, a signal length of 40 s was used

for the following analysis.

3.3 Effect of SNR

Figure 5 shows the effects of SNR on LZ complexity for

both the artificial (Fig. 5a) and real (Fig. 5b) ECG sig-

nals. As shown in Fig. 5a, the LZ values of the clean

ECG plus HF or IM noise increase quickly and mono-

tonically with decreasing SNR. The LZ values of the

clean ECG plus PL noise increase until SNR reaches

10 dB and then decrease. The LZ values from the clean

ECG plus LF noise decrease when the SNR is below

0 dB. Figure 5b shows the change trend of the LZ values

for the real ECG signals. The LZ values from the real

ECG plus MA or IM noise increase monotonously with

decreasing SNR, and the other types of signals first

increase and then decrease.

In order to further explain the effect of SNR on LZ

complexity, we analyzed the relationship between SNR

and the number of new patterns for the clean artificial

ECG signals plus five types of noise (i.e., HF, PL, LF,

IM, and mixed noise). Figure 6 shows the results. It is

clear that the number of new patterns from the ECG plus

HF, IM, or mixed noise significantly increase with

increasing signal length and decreasing SNR, whereas the

other LZ values do not show obvious changes. The

change trends of the number of new patterns of five

synthetic signals with decreasing SNR are consistent with

the LZ values of these signals. It is also worth to note

that for the clean ECG plus LF or PL noise, the number

of new patterns with an SNR of -10 dB is lower than

that with an SNR of 0 dB. This is because many signal

details are lost during the coarse-graining process and the
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Table 1 Mean values and standard deviations of LZ complexity from

50 repeats for each type of signal

Signal type Mean Standard

deviation

HF noise 0.8278 0.0082

LF noise 0.0994 0.0051

PL noise 0.0163 0.0000

IM noise 0.4425 0.0039

Clean ECG 0.0807 0.0124

Clean plus HF noise 0.7873 0.1010

Clean plus PL noise 0.2567 0.0249

Clean plus LF noise 0.1502 0.0122

Clean plus IM noise 0.0983 0.0245
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number of new patterns begins to drop off when SNR

decreases to a certain level.

The one-way analysis of variance (ANOVA) was also

emplyed for analysing the effects of the mixed noise types

at various SNR values (20, 15, 10, 5, 0, -5, and -10 dB)

on LZ complexity. The ANOVA results (F = 243.709,

P = 0.000) indicate that the LZ complexities of the

synthetic ECG at various SNR values have significant

differences.

3.4 Validation Using ROC Curve

The Youden index (YI) was employed for choosing the

optimal threshold. It is defined as follows:
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YI ¼ Sensitivity þ Specificity � 1 ð6Þ

The ROC curve of LZ complexity was used to evaluate

classification performance. Figure 7 shows the ROC curve

of the LZ values of four synthetic ECGs, i.e., the clean

ECG plus HF, LF, PL, and IM noise, respectively. The

optimal LZ threshold for the clean ECG plus HF noise is

0.875, those for the clean ECG plus LF and IM noise are

0.150, and that for the clean ECG plus PL noise is 0.225.

Figure 8 shows the ROC curve of the mixed-noise-

corrupted ECG. The area under the curve is equal to 0.979,

which means that the classification performance of the LZ

complexity is good. The optimal LZ complexity (cut-off

value) is equal to 0.775 for the artificial synthetic ECG plus

mixed noise. Table 2 shows the sensitivity, specificity, and

YI values for given LZ complexity thresholds for the

mixed-noise-corrupted ECG.

4 Discussion

In this study, we systematically characterized the values of

LZ complexity when different types of noise affected the
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ECG recordings. Figure 3 shows that the different signal

types have different LZ values. In general, the LZ com-

plexity is stable, except for the clean ECG signal plus HF

noise, which shows fluctuation. The LZ values for the

typical signals indicate that the LZ complexity is not only

closely associated with the periodicity or randomness of

the signals, but is also significantly different between

various types of noise. The LZ complexity is low when the

signal has an obvious periodicity. The ROC curve analysis

shows that the classification performance of the LZ com-

plexity is good, especially for the HF-noise-corrupted

ECG.

This study showed that the LZ complexity can indicate

the noise level contained in ECG signals. LZ complexity

can thus be applied as a metric for assessing the quality of

ECG signals corrupted by various types of noise. For ECG

signals corrupted by LF noise, we recommend that the

baseline should be removed before determining LZ com-

plexity. This study also tested the performance of LZ

complexity for real ECG signals. The change trends were

consistent with the results for the artificial ECG.
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5 Conclusion

Application of Lempel–Ziv (LZ) complexity for ECG

quality assessment was investigated in this study and it

concluded that LZ complexity is sensitive to noise level

(especially for HF noise) and can thus be a valuable ref-

erence index for the assessment of ECG signal quality.
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(2006). Analysis of EEG background activity in Alzheimer’s

disease patients with Lempel-Ziv complexity and central ten-

dency measure. Medical Engineering & Physics, 28, 315–322.

20. Dauwels, J., Srinivasan, K., Ramasubba Reddy, M., Musha, T.,

Vialatte, F. B., Latchoumane, C., et al. (2011). Slowing and loss

of complexity in Alzheimer’s EEG: two sides of the same coin?

International Journal of Alzheimer’s Disease, 1–10, 2011.

21. Li, L., & Wang, R. P. (2010). Complexity analysis of sleep EEG

signal. In 4th International Conference on Bioinformatics and

Biomedical Engineering (pp. 1–3).

22. Wu, X., & Xu, J. (1991). Complexity and brain function. Acta

Biochimica et Biophysica Sinica, 7, 103–106.

23. Aboy, M., Hornero, R., Abásolo, D., & Álvarez, D. (2006).
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