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ABSTRACT The International Classification of Diseases, Version 9 (ICD-9) is often used to identify patients
with specific diagnoses. However, certain conditions may not be accurate reflected by the ICD-9 codes, and
diagnoses code assignments are complex time-consuming processes. Although there are existing methods
for automotive disease diagnostic assignment techniques, they have limitations on the descriptiveness and
interpretability of diseases based on features. More importantly, they ignored the importance of different
features with respect to different diseases. To address the above-mentioned challenges, we propose a novel
framework, namely IFFLC, which can select the most relevant features, learn disease-specific features
for each disease, and perform multiple diagnosis codes’ assignment. Specifically, we first develop feature
selection based on disease information entropy to remove redundant and irrelevant features in both medical
chart data and medical laboratory data. Then, we build a novel multiple diagnosis codes’ classifier by
learning the disease-specific features and exploring the intra-correlations between diseases. We employ
an alternating direction method of multipliers to iteratively solve the related optimization problem. The
extensive experiments on a real-world ICU database verify the superiority of the proposed method over
state-of-the-art approaches.

INDEX TERMS Disease correlation, disease-specific feature learning, ICD code labeling, multi-label

classification.

I. INTRODUCTION

ICD code is designed as a health care classification
system [1], [2], providing a system of diagnostic codes for
classifying diseases, and used in assigning diagnostic and
procedures [3]-[7]. It defines the universe of diseases, dis-
orders, injuries and other related health conditions, listed in
a hierarchical structure. ICD is the international standard for
reporting diseases and health conditions and the diagnostic
classification standard for all clinical and research purposes
that is proposed and periodically revised by the World Health
Organization (WHO). In medical records learning, the ninth
version ICD-9 has been widely utilized. A complete, timely
and accurate diagnosis codes assignment is very important,
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especially in Intensive Care Unit (ICU) [8]-[11] since it
can be the best practice guideline to provide better treat-
ments for patients. However, the assignment of ICD codes
to patients in ICU is traditionally done by medical profes-
sionals. The task of ICD coding is by nature complex to be
completed manually, as it consists of a multi-label classifi-
cation over a tree structure. To free medical professionals
from time-consuming and tedious medical record reviews,
a system that can automatically annotate ICD-9 codes
for patients is desirable. Although there are exiting auto-
motive disease diagnostic assignment techniques [12]-[14],
code assignment is still remain as a challenge task with
following reasons. Firstly, because of the high-granularity of
ICD-9 code, code assignment may be inconsistent or inexact.
Secondly, the correlations between corresponding diagnosis
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FIGURE 1. Workflow demonstration of the proposed framework. The
green arrowheads on the left represent the training process. The red
arrowheads on the right represent the testing process. Two types of
patient data, i.e. medical chart and lab data, are in use. Feature selection
based on disease information entropy is developed to remove redundant
and irrelevant features. The disease-specific features are learned and the
intra-correlations between all diseases are explored. Finally, a multi-label
classifier is proposed to assign diagnosis codes for testing patients.

codes are easily ignored, resulting in each disease viewed
independently and the loss of useful information. Finally, lack
of selecting most relevant features for each disease leads to
the uninterpretable of coding assignment.

To address above challenge, we build an integrated frame-
work, namely IFFLC, which include three tasks: remove
redundant and irrelevant features, learn disease-specific fea-
tures for each disease and perform multiple diagnosis codes
assignment. Firstly, we utilize fuzzy mutual information as
assessment criterion to develop our feature selection algo-
rithm. Then, we build a novel multiple diagnosis codes
classifier by learning a map from the selected features to
diagnosis codes. Considering each disease highly depends on
only a few specific features (i.e., disease-specific features),
the map matrix has sparsity involving discriminative informa-
tion. Moreover, the diseases are often not independent, so the
disease correlations are embedded into the map. Therefore,
this classifier integrates the map sparsity and disease corre-
lations simultaneously, and can be used to assign diagnosis
codes for a new patient. Extensive experiments are carried
out to make clear the effectiveness of the proposed algorithm.
The demonstration of the proposed framework is shown
in Figure 1. The contributions of IFFLC are summarized as
follows.
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« Effective integrated framework. We advance an inte-
grated framework, which can select most relevant fea-
tures, learn disease-specific features for each disease and
perform multiple diagnosis codes assignment.

o Obtaining disease-specific features. We select and
analyze some specific features containing discriminative
information for each diseases and possess advantage
with respect to interpretability.

« Embedding diseases correlations. We consider dis-
eases are related to each other, and incorporate this
information into our model.

o Superior experiments results. We conduct extensive
experiments on a real-world ICU patient database, and
compare the proposed method with six comparative
approaches to demonstrate the effectiveness of IFFLC.

Il. RELATED WORK

Automated ICD coding approaches to classification of
patient records against multiple diagnosis codes fall into
multi-label classification task. Multi-label classification deals
with one sample having more than one labels simultane-
ously. In recent years, many well-established multi-label
learning algorithms [15], [16] have been proposed. These
algorithms can be grouped into two categories: problem trans-
formation methods (fitting data to algorithm) and algorithm
adaption methods (fitting algorithm to data). Problem trans-
formation methods transform one multi-label learning task
to several binary single-label learning tasks, each for one
label, such as Binary Relevance (BR)[17] and Classifier
Chain (CC) [27]. CC transforms the multi-label learning
problem into a chain of binary classification problems.
BR is a well-known framework for multi-label classifica-
tion. It transforms one multi-label learning task to several
binary single-label learning tasks. The BR approach is a
simple and straight-forward solution to multi-label learn-
ing. However, it ignores label correlations which may pro-
vide helpful extra information. Algorithm adaption methods
adapt or extend existing single-label algorithms to multi-label
learning, which can handle multi-label data directly, such
as ML-KNN [30], Multi-Label Naive Bayes classification
(MLNB) [29] and RankSVM [28]. ML-KNN [30] adapts
KNN to multi-label classification. MLNB [29] extends the
traditional naive Bayes classifiers to deal with multi-label
data. RankSVM [28] improves the maximum margin strategy
of single-label classifier SVM to construct a multi-label clas-
sifier.

At present, multi-label classification model has been
widely used to construct diagnosis codes assignment
algorithms [10], [12]-[14], [18]-[21]. Yan et al. [13] intro-
duced a multi-label large-margin classifier that automati-
cally learnt the underlying inter-code structure and predicted
diagnosis codes for patients. Ferrao et al. [18] proposed a
methodology entailing an adaptive data processing method
to support ICD coding based on structured electronic health
record data and SVM. Perotte et al. [10] automated ICD code
assignment using flat classifier and hierarchy-based classifier
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based on ICD9 diagnosis codes and discharge summaries.
Zufferey et al. [14] provided a performance comparison
of state-of-the-art multi-label classification algorithms for
the assignment of chronic diseases to patients’ records.
Baumel et al. [12] constructed multi-label classification to
assign multiple ICD codes and high-light the elements in
the clinical documents that explain and support the predicted
results. These methods automatically assign diagnosis codes
to patients according to their clinical records. However, they
do not take into account correlations between diseases, result-
ing in each disease viewed independently and the loss of use-
ful information. In practice, diseases are often related to each
other. Doctors can recognize disease correlations using their
professional knowledge to achieve more accurate diagnosis
results. Therefore, disease correlations should be incorpo-
rated into diagnoses code assignments based on multi-label
classification as doctors do.

When  diseases  correlations  are  considered,
Wang et al. [19] proposed a multi-label classifier based
on both global information and local diseases correla-
tions to assign diagnosis code using sparsity-based dis-
ease correlation embedding. Wang et al. [20] used an
encoded vector to locally exploit disease correlation, and
built multi-label classifier with local disease correlation
mining to learn multiple diagnosis codes for ICU patients.
However, the above multi-label classifiers have limita-
tions on the descriptiveness and interpretability of dis-
eases based on features, because they automatically assign
diagnostic codes without taking into account each dis-
ease highly depends on only a few specific features (i.e.,
disease-specific features). Disease-specific features contain
the most discriminating information about the corresponding
disease, and they can be used to explain and describe this
disease.

According to the above analysis, in order to solve the
existing problems of the existing models simultaneously,
we construct a multi-label classifier with disease correlations,
which can learn disease-specific features for each disease and
perform multiple diagnosis codes assignment.

lll. METHODOLOGY

A. DATABASE AND DATA DENOISING

MIMIC-III (Medical Information Mart for Intensive Care
III) is a real-world and freely-available clinical database
associated with over forty thousand patients who stayed in

TABLE 1. 1CD-9 codes considered for building the 9 subclasses of
circulatory system diseases.

ICD-9 codes Label diseases
390-392 Acute Rheumatic Fever
393-398 Chronic Rheumatic Heart Disease
401-405 Hypertensive Disease
410-414 Ischemic Heart Disease
415-417 Diseases of Pulmonary Circulation
420-429 Other Forms of Heart Disease
430-438 Cerebrovascular Disease
440-449 Diseases of Arteries, Arterioles, and Capillaries
451-459 Diseases of Veins and Lymphatics, and Other Diseases of Circulatory System
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ICU of the Beth Israel Deaconess Medical Center between
2001 and 2012. The database includes information such
as demographics, vital sign measurements made at the
bedside, chart test results, laboratory test results, proce-
dures, medications, nurse and physician notes, imaging
reports, and out-of-hospital mortality. MIMIC-III supports
a diverse range of analytic studies spanning epidemiol-
ogy, clinical decision-rule improvement, and electronic tool
development [22]. Every patient in MIMIC-III is diagnosed
with one or several diseases. According to the coding scheme
of ICD-9, there are 19 categories, and diseases of the cir-
culatory system (390-459) have the highest morbidity. Thus,
we conduct our research on this kind of diseases in this paper.
For a more specific classification, diseases of the circulatory
system (390-459) can be divided into 9 subclasses as shown
in Table 1. We use these 9 subclasses as labels in multi-label
learning. In this paper, we extract adult patients (16 years
old) with diseases of the circulatory system in the first step.
Then, we only choose 5,063 patients who stay in the ICU for
12-72 hours to obtain stable and reliable medical data values.

The medical data in MIMIC-III include two major data
sources: medical chart event data and medical laboratory
event data [14]. For chart event data, it contains all the charted
data available for a patient and displays patients’ routine
vital signs and any additional information relevant to their
care, such as fluid assessment, or physiological measure.
For laboratory event data, it contains all laboratory measure-
ments. Since most of the textual items in chart and laboratory
event data are full of noise [19], [20], it is difficult to reflect
personal health conditions. Therefore, we exclude textual
items and extract 2,240 numerical items as input features of
patients. Meanwhile, we exclude the patients whose chart
or laboratory event data are empty or corrupted, in order to
guarantee the completion of both chart and laboratory event
data for each patient. As a result, we obtain 5,058 adult
patients records out of 5,063.

B. PROBLEM STATEMENT

Suppose patients as sample set X = {x;,xp,---,x,} has a
finite set of [ possible diagnosis labels )V = {y1, y2,--- , v}
with d features F = {fi, f2, - - - , fs}. The features are made
up of chart event data and laboratory event data. D =
{(x;, ¥)I1 < i < n}is atraining dataset in a given multi-label
dataset, where x; € RY is a sample, y; € {0, 1}1 is the
corresponding diagnosis label set. If x; has the label y; then
yij = 1, otherwise y;; = 0. X = [x1,x2, - - ,xn)T e R g
the sample matrix, and Y = [y, y,, - - ,yn]T e {0, 1}”” is
the ground truth label matrix.

C. FEATURE SELECTION FOR MULTIPLE

DIAGNOSIS CODES

As mentioned above, 2,240 items constitute feature space
of multiple diagnosis codes learning. However, many of the
features may be redundant and/or irrelevant. The reason for
the redundancy is that the chart data and laboratory data are
partially duplicated. Even though laboratory values are cap-
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tured elsewhere laboratory event, they are frequently repeated
within chart event, according to the related description about
MIMIC-III [22]. Furthermore, the reason for the existence of
irrelevant features is that 2,240 items currently obtained are
associated with all diseases in ICD-9 codes system, but for
diseases of the circulatory system (390-459), some features
are irrelevant obviously. The existence of redundant and/or
irrelevant features degrades the performance and increases
the time and space complexity in learning.

Therefore, our goal is to learn a small feature subset
S =1{f.fh ,]Z}(p <« d) containing the most discrim-
inative and representative information. To guarantee that S
can achieve optimal performance, we expect it to possess two
properties. 1) Max-relevance: S is completely relevant to the
9 subclasses of the circulatory system. 2) Min-redundancy:
Features in S are not redundant with each other.

To achieve these goals, we develop feature selection based
on disease information entropy. Motivated by Lin et al. [23],
Fuzzy Mutual Information (FMI) is utilized as an evaluation
of multi-label feature selection according to the following
equation

1 n
FMI(Fy; F) = —~ ;10

[xi1Fy |- xRy |

& Xl Nxilp, |

where [x;]F, ([x;]F,) is fuzzy equivalence class associated with
x; and fuzzy set Fy(F>). The fuzzy cardinality of [x;]F is
calculated by Equation (2).

Lxilel =) rigs Iyl = Y cij )
i=1 i=1

where r;; is the degree of x; equivalent to x;. For the diagnosis
label set ), c;; is computed by cosine similarity to map
categorical label data to Euclidean space. Furthermore, based
on max-relevance and min-redundancy strategy, a candidate
feature f; is selected if it has the maximal relevance with )/,
and the minimal redundancy with the selected features
in Si—1. The objective function is calculated by

ey

1
max [FMI(fi;y)—le Z EMIF: )] 3)

fieF=Sk—1 )
! fi€Sk—1

Based on Equation (3), we summarize the pseudo-code of
feature selection for multiple diagnosis codes in Algorithm 1.

D. IFFLC FOR MULTIPLE DIAGNOSIS CODES ASSIGNMENT
Based on Algorithm 1, we can obtain a dimensionality
reduced feature subset S = {f{.f;, -+ . f}(p < d) to
reconstruct X = [x1,x2, -+ , xp]7 € RVP.

In this section, in order to capture intrinsic relationships
between features and diseases for multi-label classification,
a map matrix W = [wy,wo, .- ,w/] € RP*L will be
learned. Moreover, inspired by Zhang and Wu [16], and
Huang et al. [24], [25], we aim to learn W to indicate the cor-
responding discriminative features of each disease, i.e., the
disease-specific features can be captured by W. Conse-
quently, in multiple diagnosis codes assignment, we expect

VOLUME 7, 2019

Algorithm 1 Feature Selection for Multiple Diagnosis Codes

Input:Feature set F, sample set X, label set ), candidate
feature f.

Output: S.

Initialization: S <[], k < 1.

1: while |F| # ¢ do

2:  find f € F by maximizing Eq.(3);
3: Sy < f;

4 F < F-=1{}h

5 k<—k+1,

6: end while

7: return S.

W has three properties: 1) W can map the selected features
to diagnosis codes. 2) Disease-specific features are generated
by the nonzero entries of W. 3) W should contain the correla-
tions between diseases, because similar diseases share more
features.

Given the comprehensive consideration of the three prop-
erties, we obtain the following optimization problem for mul-
tiple diagnosis codes assignment:

n%‘i/n loss(W) + a®(W) + BQUW), 4

where loss(-) is loss function, ®(-) is built to model the dis-
ease correlations, and €2(-) is the sparsity regularisation term.
o > 0 and B > 0 are trade-off parameters.

1) DISCRIMINANT AND SPARSITY OF

DISEASE-SPECIFIC FEATURES

In Problem (4), we leverage the least squared loss as the loss
function loss(-), because of its simplicity and efficiency. Thus,
loss(W) can be formulated as

1
loss(W) = SIXw - Y% 5)

In multiple diagnosis codes assignment, different diseases
have distinct characteristics of their own. Each disease highly
depends on only a few specific features. Compared with the
feature set S, disease-specific features are sparse. To model
the sparsity of disease-specific features, /;-norm is employed
on W

QW) = Wl ©)

If w;; = 0, itindicates that the i-th feature has no use for the
discrimination of the j-th disease. On the contrary, if w;; # 0,
it reveals that the corresponding feature is discriminative to
the j-th disease.

2) EMBEDDING DISEASE CORRELATIONS

Diseases of circulatory system are not independent because
we notice that certain diseases would always appear simul-
taneously. For example, Hypertensive Disease (401-405)
is highly correlated with Other Forms of Heart Disease
(420-429). Therefore, two strongly correlated diseases would
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share more features than two weakly correlated or uncorre-
lated diseases. In light of this, to embed disease correlations
in multi-label classification, ®(W) can be formulated as

n n
O(W) = % SO rgwlwi = %Tr(RWTW), @)
i=l i=l
where R = [r;j];«; stores the correlation information between
diseases y; and y;. In [19], [24], and [25], r;j = 1 — ¢;j, and
c;j is calculated by cosine similarity. However, in MIMIC-III,
the number of patients is far less than that of normal people
with respect to each disease. Cosine similarity ignores this
situation. Therefore, we redefine a new metric to measure the
similarity between diseases y; and y; as follow

d(y;.y))

rj=1- . ; ®)

! max(d(y,, y,)) — min(d (s y,))
where

!
1
Ay, y) = Q_(cir = i), ©)
r=1

cjj is cosine similarity and s, t = 1,2, --- , L.

Combining Equations (5), (6) and (7), Problem (4) can be
rewritten as:

1 o
min= || XW — Y%+ ETr(RWTW) +BIWIl;  (10)

3) OPTIMIZATION WITH ALTERNATING DIRECTION
METHOD OF MULTIPLIERS (ADMM)
We apply ADMM [26] to solve the optimization problem (10)
in this paper.

Firstly, we introduce two auxiliary variables U and V to
make the objective function separable. Problem (10) can be
rewritten as:

1 o
in —|XW —Y||> + —Tr(RUTU Vi,
Ur,nv‘,‘%vz” 7+ 5 I( )+ BIVIIL
stU=W,V=W. (11)

Problem (11) can be transformed into its augmented
Lagrangian function form:

1 o
in ~|XW — Y|z + ~Te(RUTU 14
Ur)r‘l})r}}vzll ||F+2 1( )+ BV
+ (L1, U—-W)+ (L, V —W)
n
+5UU = WiE + 1V = WIE). (12)
Problem (12) will be solved iteratively. In each iteration,
U, V and W will be optimized alternately (update one with
the others fixed).
[Update W]: In the k + 1 iteration, the subproblem for
optimizing W is described as follows:
1
min |XW — Y} + <L’f, Uk — W> n <L’§, vk _ W>

k
n
+7<||U" — W%+ IVE - W|3). (13)
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Problem (13) can be solved by taking the gradient of its
objective function w.r.t. W and setting it to zero. Then W can
be obtained by

W = XTX 42" D' XTY + LA+ LS+ R Uh e vh)
(14)

[Update U]: The subproblem for optimizing U is described
as follows:

k
nbin%Tr(RUTU) + <L’{, U-— Wk+l> + %IIU — W
(15)

Taking the gradient of the objective function w.r.t. U and
setting it to zero. Then U can be calculated by

[Update V]: The subproblem for optimizing V is described
as follows:

k
minBIV Il + (L8, v — W)+ Sy w7

Then V can be calculated by
Vk-H =5 s [Wk-H _ L_%]
uk M
where S is the soft-thresholding operator.
The overall procedures of the optimization via ADMM are
summarized in Algorithm 2. Then, the Lagrangian multipliers
will also be updated in each iteration, which is shown in the
procedure 4 in Algorithm 2. For faster convergence, can be
adjusted using the updating strategy as shown in the proce-
dure 5 in Algorithm 2. The termination condition is either
when the differences between the objective variables of two
adjacent iterations are all below the pre-set threshold or the
maximum number of iteration is reached.

(18)

Algorithm 2 Algorithm to Solve the Problem (10)

Input:Data matrix X € R, Label matrix Y € {0, 1}/,
Disease correlation matrix R € R/*! , Parameters «, 8, p.
Output: Map matrix W € RP*!,

Initialization: W° = U° = v' = LY = LY = o,
MO — 1076, Mmax — 106’

1: repeat

2:  update W by solving (14);

3:  update U by solving (16);

4:  update V by solving (18);

5:  update Lagrangian multipliers Ly, L,.
LR — L]f T b Ukt — wkt
L22’+1 =L§ +Mk(vk+1 _ Wk+1)

6:  update u
pE = min(u™*, pp*), p > 1.

7: until termination condition:

max{[WH — W U —UR) v - vRy <
1076

max
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FIGURE 2. Performance variations for the classification algorithms. (a) Average precision. (b) Micro-F1. (c) Hamming loss. (d) Ranking loss.

(e) Coverage. (f) One-error.

TABLE 2. Performance comparison between IFFLC and all comparative methods.

Method Average Precision Hamming Loss Ranking Loss One Error Coverage Micro-F1
BR 0.7146 £ 0.0156  0.0312 £ 0.0004  0.0535 £ 0.0036  0.4867 £ 0.0018  0.3018 4 0.0025  0.4305 £ 0.0050
CcC 0.7363 £ 0.0089  0.0304 £0.0013  0.0528 £ 0.0020  0.4674 &£ 0.0045  0.2977 4 0.0023 ~ 0.4380 & 0.0068
RankSVM  0.7192 & 0.0075 0.0321 £0.0018  0.0538 £ 0.0030  0.4798 £ 0.0038 ~ 0.3024 4= 0.0031  0.4003 £ 0.0060
MLNB 0.7206 £ 0.0092  0.0303 £ 0.0017  0.0531 £ 0.0018  0.4783 £ 0.0072  0.2976 4 0.0020  0.3980 = 0.0057
ML-KNN 0.7339 £ 0.0101 0.0318 £0.0020  0.0464 £ 0.0019  0.4667 £ 0.0044  0.2965 £ 0.0027  0.4338 £ 0.0061
LIFT 0.7252 £ 0.0084  0.0324 £ 0.0014  0.0496 £ 0.0022  0.4709+£ 0.0050  0.2945 £ 0.0023  0.4225 4 0.0055
IFFLC 0.7521+ 0.0090 0.0288 £ 0.0018  0.0432 £ 0.0019  0.4651+ 0.0024 0.2975+£0.0011 0.4903-+ 0.0046

IV. EXPERIMENTS

In this section, we conduct experiments on MIMIC-III
database, so as to evaluate the effectiveness of our proposed
algorithm IFFLC.

A. EXPERIMENT SETTINGS

To illustrate the performance of IFFLC, we compare it
with the following state-of-the-art multi-label classifica-
tion algorithms, including Binary Relevance (BR) [17],
Classifier Chain (CC) [27], RankSVM [28], Multi-Label
Naive Bayes classification (MLNB) [29], Multi-Label KNN
(MLKNN) [30], and Label specific FeaTures (LIFT) [16].

« BR[17]: BR is a transformation approach, which
divides the multi-label classification problem into many
binary classification problems. In this experiment, SVM
is used as base classifier.

e CC[27]: CC is composed of a chain of binary classi-
fiers, where the prediction results of preceding binary
classifiers act as additional features for constructing
latter ones. In this experiment, SVM is used as base
classifier.

VOLUME 7, 2019

RankSVM [28]: RankSVM extends maximum margin
strategy to deal with multi-label data, where a set of
linear classifiers are optimized to minimize the empirical
ranking loss and enabled to handle nonlinear cases with
kernel tricks.

MLNB [29]: MLNB improves the traditional naive
Bayes classifiers to deal with multi-label data.
ML-KNN [30]: ML-KNN adapts k-nearest neighbor
techniques to deal with multi-label data, where maxi-
mum a posteriori (MAP) rule is utilized to make pre-
dictions by reasoning with the labeling information
embodied in the neighbors.

LIFT [16]: LIFT first performs clustering on features
with respect to each class first. Afterwards, training and
testing are conducted by querying the clustering results.
In this method, label-specific features with respect to a
certain class are exploited.

For the comparative methods, the parameter values of each

algorithm are used as the default settings according to the
corresponding literatures. For IFFLC, we tune parameters o,
g in (2710,279 ..

-,21%) and p > 1 as the default set-
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FIGURE 3. Spider Web diagram showing the stability index values with
different evaluation metrics.

tings, and report the best results. Besides, six commonly used
multi-label criteria [15] are utilized to make the comparison
from different evaluation aspects, including Average Preci-
sion, Hamming Loss, Ranking Loss, One Error, Coverage and
Micro-F1. Generally, few algorithms can outperform other
algorithms on all these criteria. For Average Precision and
Micro-F1, the larger the value is, the better the performance
will be. For Hamming Loss, Ranking Loss, One Error and
Coverage, the smaller the value is, the better the performance
will be.

B. MULTI-LABEL CLASSIFICATION RESULTS

According to Algorithm 1, we can obtain the rank list
of features directly. For the comparability of performances
among all classification algorithms, the rank list that con-
tains 2,240 features is fed to CC, MLNB, RankSVM, BR,
MLKNN, LIFT and the proposed algorithm in this study
as input. Figure 2 illustrates the change tendency of clas-
sification performance as the number of selected features
increases. Since 700 selected features have been able to fully
represent the trend of performance, we intercept 700 fea-
tures from the rank list of features. In these subfigures,
the number of the selected features is regarded as the hor-
izontal axes, and the classification performance is regarded
as the vertical axes. Moreover, seven different colored lines
represent CC, MLNB, RankSVM, BR, MLKNN, LIFT and
IFFLC, respectively. As shown in Figure 2, IFFLC can obtain
superior classification performance with the growing number
of features selected no matter how the variation tendency
changes.

As shown in Figure 2, we find 200 is a trade-off num-
ber between effectiveness and efficiency for the rank list of
features. A 10-fold cross-validation is used to evaluate the
performance systematically. Table 2 reports the classification
performance based on Average Precision, Hamming Loss,
Ranking Loss, One Error, Coverage, and Micro-F1. Best
results are highlighted in bold. The following observations
can be easily drawn from Table 2: (1) For all evaluation
indices except Coverage, IFFLC obtains superior perfor-
mance against the comparative algorithms. (2) Note that
the performance of IFFLC is extremely close to the best
value with respect to best Coverage results obtained by LIFT
method.
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In addition, we draw Figure 3 to examine the stability
of different multi-label classification algorithms on the six
criteria. The rounder the spider web diagram is, the more
stability each classification algorithm achieves. Specifically,
the red line denotes the stability value of IFFLC. The result
in Figure 3 demonstrates that IFFLC outperforms the other
approaches and achieves stable performances on six evalua-
tion criteria.

In order to systematically analyze the significant differ-
ence in 10-fold cross-validation, pairwise t-test is performed
between IFFLC and each comparative method. The results
are given in Table 3, in which the significance level (or p
value) in most cells are 0.000 (p < 0.05), implying significant
difference between the corresponding pair for all evaluation
indices that except Coverage. Meanwhile, it is worth noting
that the p-value in bold indicates that IFFLC and LIFT have
no significant difference with respect to Coverage.

The success of IFFLC is due to feature selection based on
FMI, modeling the sparsity of disease-specific features, and
embedding with disease correlations. By feature selection,
we remove redundant and irrelevant features to alleviate the
influence of high dimensionality for MIMIC III data. It is
easier to capture intrinsic relationships between features and
diseases for multiple diagnosis codes assignment. By mod-
eling the sparsity of disease-specific features, we can obtain
the strong discriminability to the corresponding diseases in
a lower dimensionality. Besides, the correlations between
diseases are discovered to learn extra latent medical infor-
mation and model a practical and stable relationship. The
other comparative approaches only exploit some of the above
aspects. For example, BR transforms this multi-label learning
task to several independent binary single-label learning tasks.
Obviously, BR does not consider disease correlations, and its
performance is always the worst or second-worst.

C. THE SUPERIORITY OF FEATURE SELECTION

Most of the existing works [14], [19], [20] rank the
frequencies of features occurrences and select the top p
most frequently recorded features to form the feature space.
In contrast, we utilize feature selection to form the input
space in this paper. To extrude the superiority of feature
selection, 200 features by feature selection and 200 features
by frequency ranking are compared as the input feature
space of our multi-label classification algorithm, respectively.
These two methods are denoted as Frequency Ranking (FR)
and Feature Selection (FS). As shown in Table 4, we can
see that feature selection achieves decent performance and
is significantly superior to the frequency ranking method on
all evaluation criteria. This is because the features obtained
by frequency ranking are for all disease codes. In contrast,
the features obtained through feature selection are associated
with specific diseases, and these features are more relevant.
In other words, there may be some features that are high
in frequency but not useful for multiple diagnosis codes
assignment.
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TABLE 3. Significance between IFFLC and each comparative method.

Method BR CC RankSVM MLNB ML-KNN LIFT
Average Precision  0.000**  0.000** 0.000%* 0.000%* 0.000%* 0.000%*
Hamming Loss 0.000**  0.000%* 0.000%* 0.0007%* 0.000%* 0.003**
Ranking Loss 0.000%*  0.000%* 0.0007%* 0.000%* 0.000%* 0.000%*
One Error 0.000%*  0.000%* 0.000%* 0.000%* 0.001%* 0.000%*

Coverage 0.000%* 0.036* 0.000%* 0.000%* 0.019% 0.174
Micro-F1 0.000**  0.000%* 0.000%* 0.000%* 0.000%* 0.005%*

*Significant at the 0.05 level (two-tailed).

**Highly Significant at the 0.01 level (two-tailed).

TABLE 4. Performance comparison of feature selection scheme on IFFLC.

Method FS Scheme FR Scheme
Average Precision 0.7521+0.0090 0.7282 0.0157
Hamming Loss 0.0288 0.0018 0.0306+0.0022
Ranking Loss 0.0432+0.0019  0.0521 £0.0024
One Error 0.4651 +0.0024  0.4767 +0.0030
Coverage 0.2975 £0.0011  0.3092 £0.0023
Micro-F1 0.4903 +0.0046  0.3887 £0.0059

V. CONCLUSION

In this paper, we proposed an integrated framework that
performed feature selection, disease-specific features learn-
ing for each disease and multiple diagnosis codes assign-
ment. This integrated framework intends to intelligently
imitate the diagnosis process of doctors to assign multi-
ple diagnosis codes to patient records automatically and
effectively. In IFFLC, the most discriminative features are
learned and the influence of disease correlations is con-
sidered. Extensive experiments validated that IFFLC was
superior over the other state-of-the-art algorithms. In the
future, we will consider modeling the more complex lev-
els of disease correlations. In this paper, we exploited
pairwise relations between diseases, i.e., second-order dis-
ease correlations. The proposed approach can achieve good
generalization performance. However, disease correlations
go beyond the second-order assumption in the real-world
medical diagnosis process. Therefore, in our future work,
we can construct a multi-label classifier for diagnosis codes
assignment by considering high-order relations among labels
such as imposing all other diseases’ influences on each
disease, or addressing connections among random subsets
of diseases, etc. Theoretically, high-order relations have
stronger correlation-modeling capabilities than second-order
relations.
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