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Abstract
This study presents a systematic comparison of different approaches to 
the automated selection of the principal components (PC) which optimise 
the detection of maternal and fetal heart beats from non-invasive maternal 
abdominal recordings.

A public database of 75 4-channel non-invasive maternal abdominal 
recordings was used for training the algorithm. Four methods were developed 
and assessed to determine the optimal PC: (1) power spectral distribution, (2) 
root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of 
the performance of the algorithm to large-amplitude noise removal (by wavelet 
de-noising) and maternal beat cancellation methods were also assessed. The 
accuracy of maternal and fetal beat detection was assessed against reference 
annotations and quantified using the detection accuracy score F1 [2*PPV*Se 
/ (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best 
performing implementation was assessed on a test dataset of 100 recordings 
and the agreement between the computed and the reference fetal heart rate 
(fHR) and fetal RR (fRR) time series quantified.

The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, 
PPV 99.7%) was obtained when using the QRS template method to select the 
optimal maternal PC and applying wavelet de-noising. The best performance 
for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained 
when the optimal fetal PC was selected using the sample entropy method 
and utilising a fixed-length time window for the cancellation of the maternal 
beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 
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19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to 
the other algorithms presented at the Physionet Challenge 2013.

Keywords: non-invasive fetal ECG, abdominal fetal ECG, ECG cancellation, 
principal components analysis, wavelet de-noising

(Some figures may appear in colour only in the online journal)

1.  Introduction

Monitoring of fetal health throughout pregnancy is paramount in order to elicit prompt 
diagnosis of possible clinical complications and inform appropriate intervention (Kennedy 
1998). The two systems most commonly used in current clinical practice are the cardioto-
cograph (CTG) and the fetal scalp electrode. A CTG (Spencer 1992) consists of two probes: 
a pressure transducer for monitoring uterine contractions, and an echo transducer for moni-
toring fetal heart rate (fHR). The information provided by this technology is limited to 
the fHR and a complete fetal ECG (fECG) signal is not available. Moreover, it is rela-
tively expensive, needs a trained nurse for the appropriate placement of the probes, and is 
extremely sensitive to maternal and fetal movement. Compared to the CTG, the use of an 
electrode placed on the scalp of the fetus (Bartlett et al 1991; Bartlett et al 1992) provides 
more information as it collects the fECG signal from which not only the fHR, but also other 
important clinical parameters can be derived. However, the fetal scalp can only be used 
during labour after rupture of the membranes and is therefore highly invasive and carries 
additional risk of infection.

The limitations of these technologies along with the need to develop alternative meth-
ods to improve maternal and fetal care have been recognised for some time (Jenkins 1989). 
Non-invasive electrical recordings can be performed by placing electrodes on the abdomen 
of the mother. This approach, like the CTG, is non-invasive and, like the fetal scalp electrode, 
collects the fECG and hence offers the prospects of providing more comprehensive clinical 
parameters. Compared to current clinical standard, this method can also facilitate long-term 
monitoring. The reliability of cardiac parameters extracted from abdominal fetal ECG (aECG) 
recordings and their excellent agreement with the values obtained from a scalp electrode sig-
nal has been recently demonstrated (Clifford et al 2011). However, acquisition of clean signals 
from the maternal abdomen is not simple and the challenges in terms of signal processing to 
extract the fECG from aECG recordings are significant. In particular, these signals are con-
taminated with noise originated by different sources, including movement of the mother and 
fetus, interference from the mains power line, and other physiological components such as 
maternal ECG (mECG) and maternal muscular activity (Sameni and Clifford 2010).

Different signal processing techniques have been investigated so far for the extraction of the 
fetal ECG from non-invasive recordings. One of the most common is Independent Component 
Analysis (ICA) (Sameni et al 2006). However, ICA used alone has practical limitations due 
to the significant noise usually affecting these signals, and the small amplitude of the fECG as 
compared to the other physiological components. In order to overcome such limitations, ICA 
has been utilised in conjunction with wavelet decomposition (Azzerboni et al 2005); or as part 
of a 2-stage Blind Adaptive Filtering approach (Graupe et al 2005). An alternative approach 
for separating the different components of aECG signals is by Principal Component Analysis 
(PCA). PCA is based on obtaining statistically uncorrelated components, which do not nec-
essarily represent independent physiological sources. This method was used, for example, 
in the algorithm developed by Martens et al (2007). Nevertheless, the reliable extraction of 
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the fetal ECG from abdominal recordings still remains an open challenge exemplified by the 
Physionet Challenge 2013 (Physionet Challlenge 2013 website) which promoted the devel-
opment of advanced signal processing techniques to improve the state of the art in this field. 
A variety of methods were proposed, including subspace decomposition and reconstruction, 
adaptive filtering and averaging, wavelet de-noising, matched filtering, Christov’s beat detec-
tion, entropy, RS slope, expectation weighting, and echo state recurrent neural network (Silva 
et al 2013). Most of the algorithms were structured in four steps, respectively for (1) pre-
processing, (2) maternal heart beat detection, (3) maternal heart beat cancellation, and (4) fetal 
heart beat detection. With respect to the steps for detection of maternal and fetal heart beats, 
one possible approach is to detect the beats from all the available channels before proceeding 
to further analysis, as done for example by Lipponen and Tarvainen (2013). Another possible 
approach requires the selection of an optimal channel on which the heart beat detection will 
be performed, as done for example by Andreotti and colleagues (Andreotti et al 2013). In 
the latter case, different strategies are possible to select this optimal channel. Similarly, for a 
PCA based approach such as that used in our study (Di Maria et al 2013), it is important to 
determine the algorithms for selecting the principal components which optimise subsequent 
heart beat detection.

The aim of this study were: (i) to compare different methods for automatically selecting the 
principal components which optimised the detection of maternal and fetal beats, (ii) to assess 
the importance of large-amplitude noise removal and several approaches to maternal ECG 
cancellation, and (iii) to compare the performance of the algorithm to that of other algorithms 
presented in the Physionet Challenge 2013.

2.  Methods

2.1.  Dataset

The dataset Set-A from the Computing in Cardiology Physionet Challenge 2013 was utilised 
as the training set for developing and assessing the different processing tools. This dataset 
contains 75 4-channel non-invasive abdominal recordings, each one lasting 60 s. For each 
recording, a reference fetal beat time series (fR-peaks) was also provided. For our study, 
to enable the accuracy of automatic detection of maternal beats to be quantified, the mater-
nal beats (mR-peaks) were manually annotated by the first author. The annotated mR-peaks 
were selected on the channel which visually showed the most clear maternal ECG after basic 
3–100 Hz filtering. All recordings were visually inspected to assess recording quality. Manual 
annotation of the maternal beats was not possible across the entire recording in 4 recordings 
(records a29, a38, a54, and a56), so these were removed from the analysis. Hence, 71 record-
ings (SET-1) were available to test the accuracy of maternal beat detection. Visual inspection 
showed that, out of these 71 recordings, 59 did not contain large-amplitude noise (SET-1a), 
and 12 did (SET-1 b). An additional 5 recordings had incomplete annotations of the fetal beats 
(records a33, a47, a52, a71, a74) and these were removed from the stages of the analysis 
following maternal beat detection. Hence, 66 recordings (SET-2) were available to test the 
accuracy of fetal beat detection.

The performance of the best implementation was finally assessed on the test data-
set Set-B, also from the Computing in Cardiology Physionet Challenge 2013, for which 
reference fetal R-peaks were not available to us. This dataset consisted of 100 4-chan-
nel recordings, each one lasting 60 s. Both Set-A and Set-B are available online through 
the Physionet website (Goldberg et al 2000) and described in more detail in an editorial 
(Clifford et al 2014).
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2.2.  Detection of maternal and fetal beats using PCA (initial algorithm)

The initial algorithm for detection of maternal and fetal beats was based on PCA of the 
multi-lead recordings and using always the first principal component (PC) for detecting 
either the maternal or fetal beats, i.e. without any optimisation of the selected PC. This sec-
tion describes the initial algorithm and section 2.3 presents the additional processing tools 
for selecting the PC which were assessed in this work leading to the final implementation.

The general structure of the algorithm consisted of four main steps (figure 1): (1) pre-pro-
cessing of the raw aECG signals for noise reduction; (2) detection of the maternal beats; (3) 
cancellation of the maternal beats; (4) detection of the fetal beats. The specific implementation 
of each of these in the initial algorithm is described below.

Figure 1.  Flow diagram showing the different steps of the algorithm.
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Pre-processing. Low and high frequency noise, mostly caused by movement artefacts, res-
piration, and electrical interference (Onaral et al 1984), was removed by a 3–100 Hz band-pass 
filter (figure 1, step 1.1). Power line noise was suppressed by an appropriate notch filter (step 1.2).  
Large–amplitude spikes, for example due to sudden movement artefact, were removed by 
wavelet de-noising (step 1.3). For this purpose, a 1-level wavelet decomposition was applied 
to each of the four channels using a bi-orthogonal mother wavelet. A threshold of 10 times the 
root mean square value was defined for the approximation; a threshold of 0.15 times the root 
mean square value was defined for the detail. The approximation and detail components were 
set to zero when they were larger than their respective threshold.

Detection of maternal beats. To emphasise the features of the maternal QRS (mQRS) com-
plex, a 3–35 Hz band-pass filter was applied (step 2.1) and the 4 maternal principal compo-
nents (mPC) computed (step 2.2). The first principal component was selected for maternal 
beat detection (mPC1) since this component was expected to contain the large maternal QRS 
complexes (step 2.3). Beat detection (figure 2) used thresholding of the square of the first 
derivative of mPC1 to 1.5 times its root mean square value after applying a 40-point median 
filter, and selecting the peaks above this threshold (step 2.4).

Cancellation of maternal beats. An average maternal beat was calculated separately for 
each channel (step 3.1) using the automatically detected mR-peak times as reference points 
and considering the heart beat to be contained in an RR-adjusted-length time window includ-
ing 30% of the previous and next RR time interval. The maternal beats were cancelled by 
aligning the average beat with each maternal beat according to the lag which gave the highest 
correlation. Then the template was scaled both for width and amplitude and subtracted from 

Figure 2.  Flow chart illustrating the steps involved in the method used for detecting the 
maternal R-peaks (mR-peaks), starting from the selected maternal principal component 
(mPC).
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the original signal leaving the fetal ECG (step 3.2). This process was carried out separately 
for each of the four original channels and for the two halves of the signal (first and last 30 s) 
in order to account for space and time variability of the ECG waveform.

Detection of fetal beats. Wavelet de-noising was used to reduce artefacts of mECG cancel-
lation (step 4.1). For this purpose, a threshold was fixed based on the root mean square value 
of the nth-level detail signal. The coefficient for the root mean square value used at leach level 
1–10 was respectively: 3.5, 8, 0, 0, 0, 80, 100, 85, 80, 65. The signal of the nth-level detail was 
set to zero when below its respective threshold before reconstruction. The four fetal principal 
components (fPC) were computed (step 4.2). The first principal component was selected for 
fetal beat detection because this component was expected to contain the (relatively) large 
fetal ECG QRS complex (step 4.3). Fetal beats were detected using a local peak detection 
algorithm.

2.3.  Algorithms for selecting the optimal principal component for  
maternal and fetal peak detection

In the above, for both maternal and fetal beat detection, the first principal component was used 
based on the expectation that this would contain the large ventricular activity. However, this 
expectation might not always be met, particularly in noisy recordings, and the current study 
assessed algorithms for selecting the principal component which provided the best perfor-
mance for maternal and fetal beat detection. Furthermore, optimal cancellation of maternal 
beats is likely to affect the performance of the algorithm so this study also assessed the sensi-
tivity of the algorithm to different implementations of maternal beat cancellation.

2.3.1.  Selection of the optimal principal component.  Four approaches for selecting the opti-
mal PC were implemented: (1) power spectral distribution (psd) (for maternal beat detection 
only); (2) root mean square (rms); (3) sample entropy (sampen); and (4) QRS template.

The aim with each of these approaches was to select the PC with the clearest and most 
enhanced QRS complexes, as this would facilitate the process of detecting the peaks of the R 
waves. The rationale for these approaches follows.

Power spectral distribution. It was expected that most of the power of the QRS is in the 
band 5–35 Hz. A psd score was calculated for each principal component as the ratio of the 
power in the band 5–35 Hz (as representative of the QRS complex) to the power in the band 
0–5 Hz (as representative of the low-frequency component of the ECG) as defined in equa-
tion (1.1). This was done for six 10 s non-overlapping portions of the principal component and 
the average value used as the final psd score (equation (1.2)). The PC with the largest psd score 
was selected for beat detection.

_ = −

−
psd ratio

PSD

PSDi
5 35 Hz

0 5 Hz
� (1.1)

∑_ = _
=

psd score
1

6
psd ratio

i
i

1

6

� (1.2)

Root mean square. This method was based on the idea of quantifying the amplitude of the 
QRS complexes in each principal component. An rms score was calculated for each principal 
component as follows. A threshold th was defined as the root mean square value of the squared 
signal x2. An rms score was calculated as the ratio of the sum of the amplitudes of the signal 
above the threshold (related to the R waves) to the sum of the amplitudes of the signal below 
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the threshold (related to the baseline level of the signal) as defined in equation (2.1). This was 
done for six 10 s non-overlapping portions of the principal component and the average value 
used as the final rms score (equation (2.2)). The PC with the largest score was selected for 
subsequent beat detection.

∑ ∑=
≥ <

x xrms_ratioi

k x
k

k x
k

, th

2

, th

2

k k
2 2

� (2.1)

∑_ = _
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6
rms ratio

i

i

1

6

� (2.2)

Sample entropy. Sample entropy quantifies the regularity of a signal. A very regular sig-
nal will have a very low value of sample entropy whereas a signal containing random noise 
will have a higher value. Therefore, this method for the selection of the mPC is based on the 
assumption that a principal component with clear ECG and little noise will have lower values 
of sampen. For the calculation of sample entropy, a value of m = 3 was used for the embedding 
dimension, and a value of r = 0.15 times the standard deviation was used for the tolerance. 
Implementation details for the calculation of sample entropy are provided in Richman and 
Moorman (2000). A sample entropy value was calculated for each of the six 10 s non-overlap-
ping portions of a principal component. For each principal component, a sampen score was 
obtained as the average of these six values. The PC with the lowest sampen score was chosen 
to be the optimal one for subsequent beat detection.

QRS template. The QRS template approach firstly produced a smoothed version of each 
PC. An ECG-like template (represented by a 100 ms triangular wave) was passed along the 
PC and the correlation coefficient between the PC and the triangular wave calculated at each 
step. A threshold th was defined as the root mean square value of the correlation signal C. A 
template score was calculated as the ratio of the mean value of the correlation signal above the 
threshold (related to the amplitude of the R waves) and the threshold value itself (as a meas-
ure of the baseline level of the signal) as defined in equation (3.1). The final template score 
was given by the average of the six ratios calculated in each of the 10 s portions of the signal 
(equation (3.2)). The PC with the largest value for this score was chosen as the optimal one 
for subsequent beat detection.

∑
_ = ≥

C
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2.3.2.  Cancellation of maternal beats.  Maternal beat cancellation was based on the genera-
tion of an average beat followed by the subtraction of this from each beat in the waveform. 
Two important considerations for average beat generation were (i) the size of the window 
assumed to contain the beat, and (ii) the number of beats used to generate the average beat. 
The initial approach described above in section 2.2 was to use an adjusted-length time window 
(30% of the previous and following RR time) and 30 beats to calculate the average one. To 
assess the sensitivity of the algorithm to specific implementation of this general framework for 
maternal beat cancellation, the initial approach was compared to one using a fixed-length time 
window for the interval considered to contain the maternal beat and also to different numbers 
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of beats used for the average beat generation. For the fixed-length time window approach, the 
maternal ECG complex was considered to be in a window containing the 250 ms before and 
the 450 ms after the mR-peak. The number of beats used to generate the average beat ranged 
from 5 to 30 in steps of 5.

2.4.  Assessment

Maternal beat detection. Assessment of the methods for selecting the optimal maternal PC 
was in terms of accuracy in detection of the maternal beats using the manual annotation as the 
reference, on the basis that the optimal PC would provide the greatest accuracy. The effect of 
wavelet de-noising (figure 1, step 1.3) on the accuracy of maternal beat detection was assessed 
by comparing the performance of the algorithm with and without this noise reduction step. 
The implementation providing the most accurate maternal beat detection was retained for 
subsequent assessment of the fetal beat detection.

Fetal beat detection. Assessment of the methods for selection of the optimal fetal PC was 
done in terms of accuracy in the detection of fetal beats against the reference annotations. 
Sensitivity of the algorithm to specific implementations of maternal beat cancellation (specifi-
cally, fixed or adjusted time window and variable number of beats used to generate the average 
beat) was assessed also in terms of accuracy of fetal beat detection.

2.5.  Scoring

For evaluation of the performance of the algorithm on the training set in detecting the maternal 
and fetal R-peaks as compared to the reference values, primarily a detection accuracy score 
(F1, Behar et al 2013) was utilised (equation (4.1)) to provide a metric which balances sensi-
tivity and positive predictive value.

= ×
× + +

F1
2 TP

2 TP FP FN
� (4.1)

Where TP is the number of correctly identified R-peaks, FP is the number of falsely identi-
fied R-peaks, and FN is the number of missed R-peaks. A detected R-peak was labelled as TP 
if within 100 ms of a reference R-peak. If no corresponding reference R-peak was found in 
this time window, then the detected R-peak was labelled as FP. If no corresponding detected 
R-peak was found for a reference R-peak in the same time window, this generated a FN. As 
further assessment metrics, also the sensitivity (Se) and the positive predictive value (PPV) 
were considered.

=
+

Se
TP

TP FN
� (4.2)

=
+

PPV
TP

TP FP
� (4.3)

The total F1 score, Se, and PPV for the entire dataset were calculated as the average of the 
individual values obtained for each record.

The performance on the test set (for the best performing implementation identified from 
the training set) was quantified using: (1) the mean square error between the reference and the 
computed fetal heart rate (fHR) time series measured in beats2/min2, and (2) the average root 
square error between the reference and computed fetal RR (fRR) time series measured in mil-
liseconds (ms) (Clifford et al 2014). Lower values of these metrics indicate better performance 
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(less error). This allowed for direct comparison of our results with the performance of other 
published work from the Physionet Challenge 2013. The fHR and fRR scores were calculated 
using the online scoring tool available in the relevant PhysioNetWorks webpage.

3.  Results

3.1.  Selection of the optimal mPC and effect of wavelet denoising

Table 1 shows the performance for the three indices F1, sensitivity, and positive predictive 
value of the various methods used for selecting the optimal mPC, with and without wavelet 
denoising. Table 1(a) shows the results for the entire SET-1. Table 1(b) presents the results 
for the subset of 59 records which did not contain large-amplitude noise (SET-1a). Table 1(c) 

Table 1(b).  Performance for detecting the maternal beats on the subset without records 
containing large-amplitude noise (SET-1a). The best performance results are shown in 
bold. WD is wavelet de-noising; F1 is the detection accuracy score; Se is sensitivity; 
and PPV is positive predictive value.

Method
F1 (%) Se (%) PPV (%)

with WD no WD with WD no WD with WD no WD

mPC1 98.3 98.3 99.1 99.2 97.8 97.7
psd 79.3 79.3 80.0 80.1 79.8 79.8
rms 99.1 99.1 99.0 99.0 99.2 99.2
sampan 99.4 99.4 99.0 99.0 99.8 99.8
template 99.4 99.4 99.1 99.1 99.8 99.8

Table 1(a).  Performance for detecting the maternal beats on the entire dataset SET-1. 
The best performance results are shown in bold. WD is wavelet de-noising; F1 is the 
detection accuracy score; Se is sensitivity; and PPV is positive predictive value.

Method
F1 (%) Se (%) PPV (%)

with WD no WD with WD no WD with WD no WD

mPC1 97.4 93.5 98.5 94.4 96.8 93.0
psd 78.2 80.2 78.9 80.8 79.5 81.5
rms 96.3 93.6 96.3 93.5 97.1 94.0
sampen 98.0 95.2 97.6 94.8 99.0 95.8
template 99.3 97.9 99.0 97.6 99.7 98.2

Table 1(c).  Performance for detecting the maternal beats on the subset with only 
records containing large-amplitude noise (SET-1b). The best performance results are 
shown in bold. WD is wavelet de-noising; F1 is the detection accuracy score; Se is 
sensitivity; and PPV is positive predictive value.

Method
F1 (%) Se (%) PPV (%)

with WD no WD with WD no WD with WD no WD

mPC1 92.9 70.3 95.2 71.3 92.0 69.7
psd 73.0 84.7 73.1 84.5 78.0 89.5
rms 83.0 66.5 82.7 66.4 86.8 68.2
sampen 91.2 74.5 90.9 74.4 95.0 76.2
template 99.0 90.5 99.0 90.6 99.1 90.5
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gives the results for the 12 records containing large-amplitude noise (SET-1 b). The imple-
mentation which provided the best performance was the one using the template method for 
the selection of the optimal maternal PC along with wavelet de-noising. The enhanced perfor-
mance of this implementation over the others in noisy recordings is clear since it achieved a 
detection accuracy score F1 of 99%, whereas selecting always the first PC (mPC1) achieved a 
score of less than 93% (table 1(c)). This implementation gave F1 99.3%, Se 99.0%, and PPV 
99.7% on the entire SET-1 for detection of the maternal R peaks (table 1(a)).

3.2.  Selection of the optimal fPC and maternal beat cancellation

Figure 3 shows the performance in terms of F1 (figure 3(a)), Se (figure 3(b)) and PPV  
(figure 3(c)) for different methods of selecting the fetal PC. The figure also shows the effect 
on performance of the different methods for maternal beat cancellation considering fixed and 
adjusted-length time windows and different numbers of beats used for generating the average 
maternal ECG beat. Since the psd method gave very poor performance for the maternal beat 
detection it was not further considered for the selection of the fetal PC. The best performance 
was obtained using the sample entropy method for selecting the fPC and a fixed-length time 
window for generating the average maternal beat from 30 heart cycles. This final implementa-
tion gave accuracy in detecting the fetal heart beats of F1 89.8%, Se 89.3%, and PPV 90.5%. 
This compared favourably to the performance of the initial algorithm which was F1 75.1%, 
Se 73.0%, and PPV 78.2%.

Figure 4 shows the application of the final algorithm to record a05 of Set-A through the 
different processing steps. Figure 4(a) shows the four channels of the raw abdominal ECG 
recording; figure  4(b) shows the same signals after pre-processing and including wavelet 
de-noising; figure 4(c) shows the four channels after performing maternal beat cancellation; 
figure 4(d) shows the fetal PC selected for final detection of the fetal heart beats. The com-
puted beats are indicated by red arrows and the reference ones by black full circles.

3.3.  Results on the test set and comparison with published algorithms

The final best performing implementation identified above was then assessed on the test data-
set Set-B. This gave a result of 142.7 beats2/min2 for the fHR time series and 19.9 ms for the 
fRR time series. Table 2 compares the performance of this implementation of our algorithm 
with the published results of the 28 other participants to the Physionet Challenge 2013 for fHR 
(event 4) and fRR (event 5) scores on the open test dataset Set-B. The dataset used to score the 
other events was not publicly available.

4.  Discussion

This study presented a systematic comparison of different methods for the automated selec-
tion of the principal components which optimise the detection of maternal and fetal beats in 
the context of fetal ECG analysis from non-invasive maternal abdominal recordings.

Five methods were evaluated for the selection of the optimal maternal PC: (1) first principal 
component, (2) power spectral distribution, (3) root mean square, (4) sample entropy, and (5) 
template. The results showed that the template algorithm performed best overall considering the 
entire SET-1 (table 1(a)). This template method can be considered as a simplified version of the 
approach presented by Andreotti et al (2013) which assessed the agreement between the chan-
nels and an average beat obtained using Gaussian kernels. Sample entropy performed equally 
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Figure 3.  Performance for the detection of the fetal R peaks quantified as (a) detection 
accuracy score F1, (b) sensitivity Se, and (c) positive predictive value PPV. Results are 
given for each of the four methods used for the selection of the optimal fetal PC, and 
comparing the two different approaches to maternal ECG cancellation, i.e. adjusted-
length time window (blue line) versus fixed-length time window (red line). Results are 
also shown separately for the different values of number of beats used for generating 
the maternal average beat. The error bars represent the mean value (triangle) obtained 
on SET-2 and the standard error of the mean.
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well with signals not affected by large-amplitude noise (SET-1a, table 1(b)). The improvement 
in using the template method was even clearer with signals containing large-amplitude noise, 
giving an F1 of 99.0% on SET-1 b (table 1(c)). In this case the sample entropy performed worse 
than using the first principal component, F1 91.2% and 92.9% respectively. This result is not 
surprising considering that the wavelet de-noising method actually modifies the signals set-
ting to zero the portions containing large-amplitude noise. This will have inevitably affected 
the regularity of the signal as quantified by sample entropy. The value of performing wavelet 
de-noising before computing the principal components was shown by the consistently better 
performance of each method as compared to the case without wavelet de-noising (table 1(a)). 

Figure 4.  Record a05 at different steps of the processing: (a) raw 4-channel signals, 
(b) after pre-processing—including wavelet de-noising, (c) after maternal beat cancel-
lation, and (d) optimal fetal principal component selected for fetal beat detection. An 
excerpt of 10 s is shown. Computed (red arrows) and reference (black full circles) fetal 
R peaks are indicated.
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Only the psd method contradicted this result and actually performed better in the absence of 
wavelet de-noising. This is probably because the large-amplitude noise contained power in 
the 3–35 Hz band contributing to the selection of a principal component which was not ideal 
for detecting the maternal beats. When the signals did not contain large-amplitude noise, all 
methods performed equally either with or without wavelet de-noising (table 1(b)). This gives 
confidence that the wavelet de-noising algorithm did not modify the signals when the quality 
of the recording was good. When signals contained large-amplitude noise, the use of wavelet 
de-noising greatly improved the performance (table 1(c)). In this case, the basic approach using 
the first principal component improved by 22.6% in F1 when using wavelet de-noising (from 
70.3% to 92.9%). The best performing template method improved by 8.5% (from 90.5% to 
99.0%). The use of wavelet de-noising allowed for an initially noisy channel to be kept for sub-
sequent analysis on the assumption that portions of this noisy channel may still contain good 
quality signal which could help the subsequent detection of the fetal beats. This is an alternative 
approach to excluding noisy channels from the analysis (Liu and Li 2013).

Four methods were evaluated for the selection of the optimal fetal PC: (1) first principal 
component, (2) root mean square, (3) sample entropy, and (4) template. The method based on 
power spectral distribution performed poorly in the detection of maternal beats and therefore 
was not considered for the selection of the fetal PC. The best performing method was sample 
entropy which gave a mean F1 of 89.8% when using a fixed-length window for maternal beat 

Table 2.  Performance of this algorithm on the test dataset Set-B in comparison to other 
results from the Physionet Challenge 2013 as published in the proceedings of Comput-
ing in Cardiology 2013.

Publication fHR score (beats2/min2)  
[rank out of 29]

fRR score (ms)
[rank out of 29]

Andreotti et al (2013) 18.1 [1] 4.4 [1]
Lipponen and Tarvainen (2013) 28.9 [2] 4.8 [3]
Behar et al (2013) 29.6 [3] 4.7 [2]
Varanini et al (2013) 34.0 [4] 5.1 [4]
Haghpanahi and Borkholder (2013) 50.1 [5] 9.1 [9]
Xu-Wilson et al (2013) 52.5 [6] 10.6 [11]
Ghaffari et al (2013) 63.8 [7] 11.2 [14]
Lukoševičius and Marozas (2013) 66.3 [8] 8.2 [7]
Kropf et al (2013) 82.4 [9] 7.4 [6]
Podziemski and Gieraltowski (2013) 118.2 [10] 10.7 [12]
Maier and Dickhaus (2013) 118.4 [11] 9.4 [10]
Rodrigues (2013) 124.8 [12] 14.4 [15]
Di Marco et al (2013) 135.2 [13] 7.1 [5]
Starc (2013) 181.0 [15] 10.9 [13]
Razavipour et al (2013) 210.1 [16] 21.2 [19]
Di Maria et al (2013) 223.2 [17] 19.3 [16]
Kuzilek and Lhotska (2013) 249.8 [18] 22.0 [20]
Perlman et al (2013) 262.1 [19] 27.8 [23]
Liu and Li (2013) 264.9 [20] 9.0 [8]
Fatemi et al (2013) 274.3 [21] 32.1 [24]
Christov et al (2013) 285.1 [22] 20.0 [18]
Petrolis and Krisciukaitis (2013) 341.5 [23] 32.8 [25]
Almeida et al (2013) 521.4 [24] 33.0 [26]
Dessì et al (2013) 639.5 [25] 23.8 [21]
Plešinger et al (2013) 688.5 [26] 26.8 [22]
Akhbari et al (2013) 1326.2 [27] 45.1 [27]
Niknazar et al (2013) 1514.6 [28] 57.0 [28]
Llamedo et al (2013) 4714.6 [29] 121.6 [29]
This algorithm 142.7 [14] 19.9 [17]
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cancellation and 30 heart cycles for generating the maternal average beat (figure 3(a)). The 
template method also performed well (with fixed-length window), but not as well as sample 
entropy in this case. This is because the template method assumes that a clear QRS complex 
should be present which although almost always true for maternal beats, this is not the case 
for fetal beats due to their relatively low amplitude. The sample entropy was able to identify 
and quantify the regularity given by the fetal heart activity even in the absence of clear QRS 
complexes in the recordings. The use of a fixed-length time window for generating the average 
maternal beat always outperformed the adjusted-length window (figure 3). This is because the 
use of a 700 ms window is likely to contain almost the entire heart cycle whereas the adjusted-
length window only contained about 60% of it and this may not suffice to include the entire 
PQRST complex in all cases. This approach led to non accurate cancellation in the case of 
slow heart rates in which the QT interval was relatively long and was a limitation of our initial 
algorithm. In addition, the adjusted-length window approach assumed a linear relationship 
between the duration of the PQRST complex and the RR time. However, a previous study 
(Malik et al 2002) showed that the relationship between the QT interval (here approximated 
to the PQRST length) and the RR time is not necessarily linear. Furthermore, even when this 
relationship is linear it has different slope from subject to subject. The algorithm was relatively 
insensitive to the number of beats utilised to generate the average maternal beat (figure 3).

After this assessment, the best performing implementation of the algorithm used the tem-
plate method for selection of the optimal maternal PC and the sample entropy for the opti-
mal fetal PC; it utilised the wavelet de-noising algorithm and a fixed-length time window 
for cancellation of the maternal beats (with 30 maternal beats used to generate the average 
beat). Compared to the initial algorithm (section 2.2) this implementation improved the per-
formance for the ultimate goal of accurately detecting the fetal beats with F1 89.8% vs 75.1%, 
Se 89.3% vs 73.0% and PPV 90.5% vs 78.2%. Algorithm thresholds and parameters were 
set empirically and there was no systematic optimisation of these values in the present study, 
so this is a potential area of improvement. The step for reducing large-amplitude noise was 
considered also by other authors using different techniques. For example, Varanini and col-
leagues (Varanini et al 2013) used an approach based on selective median filtering. Other 
algorithms which performed particularly well in the challenge used more complex and adap-
tive methods for the cancellation of the maternal ECG such us Kalman smoother (Andreotti 
et al 2013), augmented principal component regression (Lipponen and Tarvainen 2013), and 
singular value decomposition (Varanini et al 2013). The best performing algorithms under-
took a common four step approach but also included a post-processing stage to ensure param-
eters were within expected physiological ranges (Andreotti et al 2013). In addition, the best 
performing algorithms generated additional waveforms based on channel differences or ICA  
(Andreotti et al 2013; Lipponen and Tarvainen 2013), with the benefit of noise cancellation or 
feature enhancement. Adaptive processes, such as maternal template adaption, were common 
features of the best performing algorithms (Andreotti et al 2013; Haghpanahi and Borkholder 
2013). Also, performance was enhanced when several algorithms were combined and a qual-
ity measure used to define the optimal algorithm for a specific recording (Behar et al 2013; 
Xu-Wilson et al 2013). For example, Behar et al (2013) used several algorithms for mECG 
extraction on each recording, and then from the resulting fHR time series chose the smoothest 
one. In addition, a post-processing stage, not considered by our algorithm, identified outliers 
in the fRR or fHR time series such that values lying outside of expected physiological range 
were constrained (Andreotti et al 2013). As a common decomposition technique PCA was the 
basis of many of the algorithms submitted to the Challenge (Di Maria et al 2013; Petrolis and 
Krisciukaitis 2013). However, without optimisation of all the processing steps, PCA alone 
could not match the performance of the highest ranking algorithms.



C Di Maria et al

1663

Physiol. Meas. 35 (2014) 1649

The final implementation presented in this work ranked 14 (fHR score) and 17 (fRR score) 
out of 29 when compared to the other algorithms presented at the Physionet Challenge 2013.

5.  Conclusion

The results of this study suggest the template and the sample entropy methods as promising 
approaches to selecting the optimal PCA channel for maternal and fetal heart beat detection. 
The value of using wavelet de-noising has also been demonstrated along with the sensitivity 
of the performance of the algorithm to the method used for cancellation of the maternal beats.

References

Akhbari M, Niknazar M, Jutten C, Shamsollahi M B and Rivet B 2013 Fetal electrocardiogram R-peak 
detection using robust tensor decomposition and extended Kalman filtering Comput. Cardiol.  
40 189–92

Almeida R, Gonçalves H, Rocha A P and Bernardes J 2013 A wavelet-based method for assessing fetal 
cardiac rhythms from abdominal ECGs Comput. Cardiol. 40 289–92

Andreotti  F, Riedl  M, Himmelsbach  T, Wedekind  D, Zaunseder  S, Wessel  N and Melberg  H 2013 
Maternal signal estimation by Kalman filtering and template adaptation for fetal heart rate 
extraction Comput. Cardiol. 40 193–6

Azzerboni B, La Foresta F, Mammone N and Morabito F C 2005 A new approach based on wavelet-
ICA algorithms for fetal electrocardiogram extraction Proc. ESANN’2005 pp 193–8 ISBN 
2-930307-05-6; 

Bartlett M L R, Murray A and Dunlop W 1991 Properties of fetal heart beat intervals during labour  
J. Biomed. Eng. 13 169–72

Bartlett M L R, Murray A and Dunlop W 1992 Is fetal heart rate monitoring sufficiently sensitive to 
detect changes during labour? J. Biomed. Eng. 14 431–4

Behar J, Oster J and Clifford G D 2013 Non-invasive FECG extraction from a set of abdominal sensors 
Comput. Cardiol. 40 297–300

Christov I, Simova I and Abächerli R 2013 Cancellation of the maternal and extraction of the fetal ECG 
in noninvasive recordings Comput. Cardiol. 40 153–6

Clifford G D, Sameni R, Ward  J, Robinson  J and Wolfberg A J 2011 Clinically accurate fetal ECG 
parameters acquired from maternal abdominal sensors Am. J. Obstet. Gynecol. 205 47.e1-5

Clifford  G D, Silva  I, Behar  J and Moody  G 2014 Noninvasive fetal ECG analysis Physiol. Meas.  
35 1521

Dessì A, Pani D and Raffo L 2013 Identification of fetal QRS complexes in low density non-invasive 
biopotential recordings Comput. Cardiol. 40 321–4

Di Marco L Y, Marzo A and Frangi A 2013 Multichannel foetal heartbeat detection by combining source 
cancellation with expectation-weighted estimation of fiducial points Comput. Cardiol. 40 329–32

Di Maria C, Wenfeng D, Bojarnejad M, Pan F, King S, Zheng D, Murray A and Langley P 2013 An 
algorithm for the analysis of foetal ECG from 4-channel non-invasive abdominal recordings 
Comput. Cardiol. 40 305–8

Fatemi  M, Niknazar  M and Sameni  R 2013 A robust framework for noninvasive extraction of fetal 
electrocardiogram signals Comput. Cardiol. 40 201–4

Ghaffari A, Atyabi S A, Mollakazemi M J, Niknazar M, Niknami M and Soleimani A 2013 PhysioNet/
CinC Challenge 2013: a novel noninvasive technique to recognize fetal QRS complexes from 
noninvasive fetal electrocardiogram signals Comput. Cardiol. 40 293–6

Goldberger  A L, Amaral  L A N, Glass  L, Hausdorff  J M, Ivanov  P Ch, Mark  R G, Mietus  J E,  
Moody  G B, Peng  C K and Stanley  H E 2000 PhysioBank, PhysioToolkit, and PhysioNet: 
components of a new research resource for complex physiologic signals Circulation 101 e215–20

Graupe  D, Zhong  Y and Graupe  MH 2005 Extraction of fetal ECG from maternal ECG early in 
pregnancy IJBEM 7 166–8

Haghpanahi M and Borkholder D A 2013 Fetal ECG extraction from abdominal recordings using array 
signal processing Comput. Cardiol. 40 173–6

http://dx.doi.org/10.1016/0141-5425(91)90064-E
http://dx.doi.org/10.1016/0141-5425(91)90064-E
http://dx.doi.org/10.1016/0141-5425(91)90064-E
http://dx.doi.org/10.1016/0141-5425(92)90090-8
http://dx.doi.org/10.1016/0141-5425(92)90090-8
http://dx.doi.org/10.1016/0141-5425(92)90090-8
http://dx.doi.org/10.1088/0967-3334/35/8/1521
http://dx.doi.org/10.1088/0967-3334/35/8/1521
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1161/01.CIR.101.23.e215


C Di Maria et al

1664

Physiol. Meas. 35 (2014) 1649

Jenkins H M L 1989 Thirty years of electronic intrapartum fetal heart rate monitoring: discussion paper 
J. R. Soc. Med. 82 210–4

Kennedy  R G 1998 Electronic fetal heart rate monitoring: retrospective reflections on a twentieth-
century technology J. R. Soc. Med. 91 244–50

Kropf M, Modre-Osprian R, Schreier G and Hayn D 2013 A robust algorithm for fetal QRS detection 
using non-invasive maternal abdomenal ECGs Comput. Cardiol. 40 313–6

Kuzilek J and Lhotska L 2013 Advanced signal processing techniques for fetal ECG analysis Comput. 
Cardiol. 40 177–80

Lipponen  J A and Tarvainen  M P 2013 Advanced maternal ECG removal and noise reduction for 
application of fetal QRS detection Comput. Cardiol. 40 161–4

Liu C and Li P 2013 Systematic methods for fetal electrocardiographic analysis: determining the fetal 
heart rate, RR interval and QT interval Comput. Cardiol. 40 309–12

Llamedo M, Martín-Yebra A, Laguna P and Martínez J P 2013 Noninvasive fetal ECG estimation based 
on linear transformations Comput. Cardiol. 40 285–8

Lukoševičius M and Marozas V 2013 Noninvasive fetal QRS detection using echo state network Comput. 
Cardiol. 40 205–8

Maier  C and Dickhaus  H 2013 Fetal QRS detection and RR interval measurement in noninvasively 
registered abdominal ECGs Comput. Cardiol. 40 165–8

Malik M, Färbom P, Batchvarov V, Hnatkova K and Camm A J 2002 Relation between QT and RR 
intervals is highly individual among healthy subjects: implications for heart rate correction of the 
QT interval Heart 87 220–8

Martens S M M, Rabotti C, Mischi M and Sluijter R J 2007 A robust fetal ECG detection method for 
abdominal recordings Physiol. Meas. 28 373–88

Niknazar  M, Rivet  B and Jutten  C 2013 Fetal QRS complex detection based on three-way tensor 
decomposition Comput. Cardiol. 40 185–8

Onaral B, Sun H H and Schwan H P 1984 Electrical properties of bioelectrodes IEEE Trans. Biomed. 
Eng. 31 827–32

Perlman O, Katz A and Zigel Y 2013 Noninvasive fetal QRS detection using a linear combination of 
abdomen ECG signals Comput. Cardiol. 40 169–72

Petrolis R and Krisciukaitis A 2013 Multi stage principal component analysis based method for detection 
of fetal heart beats in abdominal ECGs Comput. Cardiol. 40 301–4

Physionet Challenge 2013 website: www.physionet.org/challenge/2013/
Plešinger F, Jurák P and Halámek J 2013 Extracting the R-wave position from an FECG record using 

recognition of multi-channel shapes Comput. Cardiol. 40 157–60
Podziemski P and Gierałtowski J 2013 Fetal heart rate discovery: algorithm for detection of fetal heart 

rate from noisy, noninvasive fetal ECG recordings Comput. Cardiol. 40 333–6
Razavipour F, Haghpanahi M and Sameni R 2013 Fetal QRS complex detection using semi-blind source 

separation framework Comput. Cardiol. 40 181–4
Richman J S and Moorman J R 2000 Physiological time-series analysis using approximate entropy and 

sample entropy Am. J. Physiol. Heart Circ. Physiol. 278 H2039-49
Rodrigues R 2013 Fetal ECG detection in abdominal recordings: a method for QRS location Comput. 

Cardiol. 40 325–8
Sameni R and Clifford G D 2010 A review of fetal ECG signal processing issues and promising directions 

Open Pacing Electrophysiol. Ther. J. 3 4–20
Sameni R, Jutten C and Shamsollahi M B 2006 What ICA provides for ECG processing: application to 

noninvasive fetal ECG extraction IEEE ISSPIT 2006 656–61
Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford G D and Moody G B 2013 Noninvasive fetal ECG: 

the PhysioNet/computing in cardiology challenge 2013 Comput. Cardiol. 40 149–52
Spencer J A 1992 Role of cardiotocography Br. J. Hosp. Med. 48 115–8
Starc  V 2013 Non-invasive fetal multilead RR interval determination from maternal abdominal 

recordings: the Physionet/CinC challenge 2013 Comput. Cardiol. 40 317–20
Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G and Balocchi R 2013 A multi-step approach 

for non-invasive fetal ECG analysis. Comput. Cardiol. 40 281–4
Xu-Wilson M, Carlson E, Cheng L and Vairavan S 2013 Spatial filtering and adaptive rule based fetal 

heart rate extraction from abdominal fetal ECG recordings Comput. Cardiol. 40 197–200

http://dx.doi.org/10.1136/heart.87.3.220
http://dx.doi.org/10.1136/heart.87.3.220
http://dx.doi.org/10.1136/heart.87.3.220
http://dx.doi.org/10.1088/0967-3334/28/4/004
http://dx.doi.org/10.1088/0967-3334/28/4/004
http://dx.doi.org/10.1088/0967-3334/28/4/004
http://www.physionet.org/challenge/2013/

