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Abstract

An early return of the reflected component in the arterial pulse has been recognized as an important indicator of
cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave
reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four
blood pressure categories based on the systolic blood pressures (i.e., #110, 111–120, 121–130 and $131 mmHg). Each
blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms
(RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and
normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height
of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the
evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak
position of the second Gaussian significantly shorten (P,0.01), the peak height of the first Gaussian significantly decreased
(P,0.01) and the peak height of the second Gaussian significantly increased (P,0.01), inducing the significantly decreased
peak position interval and significantly increased peak height ratio (both P,0.01). Sex factor had no significant effect on all
evaluation indices (all P.0.05). Moreover, the interaction between sex and blood pressure factors also had no significant
effect on all evaluation indices (all P.0.05). These results showed that blood pressure has significant effect on the change of
wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The
results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave
reflection.
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Introduction

The shapes of artery pressure waveform are determined by the

cardiac ejection function and the mechanical and geometric

properties of the systemic arteries. Changes of the artery pressure

waveform features have been accepted as the risk indicators of

cardiovascular diseases [1,2]. It is traditionally accepted that

clinically measured artery pressure waveform contains both the

forward and backward components [3]. Recent years, the

backward component (i.e., wave reflection from the periphery to

the heart, also named reflected component) has been recognized as

an important indicator of cardiovascular risk [4–7]. However, the

underlying physiological mechanisms of the forward and reflected

components have not been fully understood. In healthy subjects,

the reflected component normally returns to the central aorta in

diastole and acts to maintain diastolic perfusion pressure in the

coronary artery circulation. However, if the reflected component

comes back earlier to the heart (usually in the late systole), it will

conduce the rise of the central systolic and pulse pressures and will

depress the coronary perfusion pressure [5]. For these reasons, it is

important to accurately estimate the amount and location of the

wave reflection [8–12].

O’ourke et al and Segers et al reported that wave reflection sites

shift proximally toward the heart with the advancing age [13,14].

On the contrary, Mitchell et al found that the wave reflection sites

exhibit distal shifts with the advancing age due to the impedance

fitting between the central aorta and proximal muscular arteries

[15]. Sugawara et al used a combination of artery pressure

waveform analyses and 3D MRI to locate the reflection sites and

suggested that the major reflection sites did not change with aging

until 65 years of age but shifted distally thereafter [5]. Therefore, it

is controversial about the wave reflection sites. In addition, all of

the above studies are mainly based on the analysis of the time-

reference point features (e.g., the start, peak and inflection points)

from the original pulse waveforms, or based on the analysis of the

derived clinical indices, such as pulse wave velocity (PWV).
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However, the identification methods for the time-reference point

features are optional and non-uniform, which could induce a

failure to compare the results from the different researchers

[1,11,12,16–18]. Besides, the artery length measurement is very

complicated when using a 3D MRI technique for PWV detection

[19], which limited the practical applications. So the discrepancy

in the above literatures is not surprising.

Recently, the model-based pulse decomposition methods have

been used for the pulse forward and backward propagation

analysis. In this case, the artery pressure waveform is often

decomposed into several independent sub-waves using the

different mathematic functions, such as the triangular [20],

logarithmic normal [21,22] and Gaussian functions [11,12,23–

25]. Among them, pulse decomposition based on Gaussian fitting

and particle swarm optimizer (PSO) algorithm could obtain both

good fitting accuracy and fast calculation efficiency in our previous

studies [11,12]. In addition, to investigate the physiological

relevance of the characteristic features from the modeled Gaussian

functions, we compared them between the normal subjects and

heart failure patients and found that significant changes were

presented in the heart failure patients [26].

The previous studies have showed that the wave reflection

changed with the age and hypertension factors when using the

traditional clinical indices, such as pulse wave velocity (PWV),

augmentation index (AI), reflection index (RI) and stiffness index

(SI) [15,27–29]. However, for the evaluation of wave reflection

based on the modeling method, previous studies mainly paid

attention to the effect of aging [13–15,19]. In this study, we aimed

to explore if there are changes of wave reflection with the blood

pressure and sex differences in peripheral artery when using the

Gaussian fitting method.

Methods

Ethics statement
One hundred and ninety subjects (105 men and 85 women;

aged between 18 and 75) were enrolled at the Qilu Hospital of

Shandong University. All subjects gave their written informed

consents to participate in the study, and confirmed that they had

not participated in any other ‘clinical trial’ within the previous

three months. The study obtained a full approval from the Clinical

Ethics Committee of the Qilu Hospitals of Shandong University

and all clinical investigation was conducted according to the

principles of expressed in the revised guidelines of Declaration of

Helsinki – the fifth revision in the Edinburgh 2000 [30].

Subjects
A comprehensive subject sample including the healthy volun-

teers (n = 57) and the cardiovascular disease subjects (n = 133) was

included in this study. The cardiovascular disease subjects

included: coronary heart disease (n = 53), congestive heart failure

(n = 42) and dyslipidemia (n = 38). The coronary heart disease

subjects should be consistent with one of the following symptoms:

1) The electrocardiogram (ECG) waves presented a typical

myocardial infarction abnormality; or 2) A horizontal or oblique

downward superior to 0.1 mV could be found on the ECG ST-

segment. The congestive heart failure subjects should be consistent

with one of the following symptoms: 1) Accord with the class II-III

Figure 1. Schematic diagram of the measurement system and experimental procedure. (A) ECG and radial artery pressure waveforms
(RAPW) signals were synchronously recorded with a sampling rate of 1000 Hz and were converted into digital signals using a 16-bit A/D data
acquisition card. (B) Auscultatory systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded manually at the beginning and end
of the signal recording (more than one minute) for each subject.
doi:10.1371/journal.pone.0112895.g001
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of the New York Heart Association (NYHA) Functional Classifi-

cation; or 2) Left ventricular ejection fraction (LVEF) is lower than

50% with ultrasonic cardiogram (UCG) detection. The dyslipide-

mia subjects should have a higher low-density lipoprotein, total

cholesterol or triglycerides. The healthy volunteers should have the

normal performances in the UCG and ECG checks. Women who

were pregnant or subjects with severe organ damage or psychiatric

disorders had been excluded. No subjects had taken medications

or smoked cigarettes before the test. All of the potential risks and

procedures of the study were explained to the subjects, and they

gave their written informed consent to participate in this study.

Experimental protocol
Figure 1 gives a schematic diagram illustrating the measure-

ment system and experimental procedure. All the measurements

were undertaken in a quiet, temperature-controlled measurement

room in the Qilu Hospital of Shandong University, which

provided a stable temperature at the level of 2563uC. Before

the formal recording, each subject lay supine on a measurement

bed for a 10 min rest period to allow cardiovascular stabilization.

Three electrocardio-electrode clamps were attached to the right

wrist, the right ankle and the left ankle respectively, to acquire the

standard limb II-lead ECG signal. The piezoresistive sensor was

attached to the left wrist to acquire the radial artery pressure

waveforms (RAPW) signal. A cuff of mercurial sphygmomanom-

eter was wrapped on the subject’s right brachia for the

auscultatory blood pressures measurement manually, i.e., systolic

blood pressure (SBP) and diastolic blood pressure (DBP). The

procedure for blood pressure measurement was followed the

guidelines recommended by the British Hypertension Society and

American Heart Association [31,32]. All the measurements were

performed by an experienced operator to ensure the electrocardio-

electrode clamps, the piezoresistive sensor and the cuff were

attached well.

The standard limb II-lead ECG and RAPW signals were

synchronously recorded with a sampling rate of 1000 Hz for more

than 1 min and were converted into digital signals using a 16-bit

A/D data acquisition card (National Instruments, USA). During

the signal recording, the subjects were asked to keep the regular

and gentle breathing. Auscultatory SBP and DBP were recorded

manually at the beginning and end of the signal recording from

the right brachia. The mean arterial pressure (MAP) and pulse

pressure (PP) were calculated using the classic formula: MAP =

DBP + (SBP2DBP)/3 and PP = SBP-DBP. For each subject,

SBP, DBP, MAP and PP all used the mean value of the two

measurements.

Signals pretreatment
Figure 2 (a) gives a demonstration of the synchronously

recorded ECG and RAPW signals. First, the slow varying

components (0–0.05 Hz) were removed from the ECG and

RAPW signals. Second, the R-wave peaks of the ECG were

detected using the Wavelet Transform Modulus Maxima method

[33]. Ectopic beats were identified and excluded using our

previously developed method [34]. After the location of R-wave

peaks, the corresponding pulse feet (start of pulse) were found. Solà

et al’s method was used to detect the pulse feet [17], which was

based on the parametric modeling of the rising edge of a pulse

waveform. The RAPW signal was then segmented between the

starting points of two consecutive pulses. The first ten successive

cardiac cycle pulse episodes without the ectopic beats were used

for the subsequent analysis. Using ten pulse episodes could ensure

the variation over a respiratory period was included.

Let x1,x2, � � � ,x10 denotes the selected ten cardiac cycle pulse

episodes from the RAPW signal. Each xi(i~1,2, � � � ,10) will be

enlarged or shortened to ~xxk, which has the uniform length of

N~1000 (i.e. the width normalization). After the width normal-

ization, the amplitude normalization was executed using the

following formula:

Xi~
~xxi{ min (~xxi)

max (~xxi){ min (~xxi)
: ð1Þ

After the amplitude normalization, each pulse episode

Xi(i~1,2, � � � ,10) will have the same length 1000 and the same

Figure 2. Demonstration examples of the ECG and RAPW signals and the construction process for the normalized pulse episode. (A)
ECG and RAPW signals and their feature information: the detected R-wave peaks are denoted as ‘‘N’’and the starting points of RAPW are denoted as
‘‘.’’, (B) and (C) the normalized pulse episodes corresponding to the original pulse episodes in sub-figure (A) with a width of 1000 points and
amplitude to unity between 0 and 1.
doi:10.1371/journal.pone.0112895.g002
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amplitude range between 0 and 1. The construction process for

the normalized pulse episode of RAPW signal was shown in

Figure 2. In Figure 2 (A), two pulse episodes were separated from

the RAPW signal and the corresponding normalized pulse

episodes were shown in Figure 2 (B) and (C)

Waveform fitting method
Our previous study [12] reported that the radial pulses could be

accurately and reliably modeled using three positive Gaussian

functions. So three Gaussian functions were used here and they

were denoted as f1(n), f2(n) and f3(n). Each Gaussian function fk(n)

(k = 1, 2, 3) had 1000 points (n = 1, 2, …, 1000) and was

determined by three sub-wave parameters: the peak height Hk,

half-width Wk and peak position Ck. The Gaussian functions are

defined as follows:

fk(n)~Hk| exp ({
2(n{Ck)2

W 2
k

) ð2Þ

where n = 1, 2, …, 1000, k = 1, 2, 3, and Ck satisfies the following

condition: 1,C1,C2,C3,1000.

After the nine parameters Hk, Wk and Ck were determined, the

superimposed curve f(n,x) of the three Gaussian functions was

regarded as the fitted curve for the normalized pulse episode S(n):

f (n,x)~
X3

k~1
fk(n), ð3Þ

where x = [Hk, Wk, Ck] (k = 1, 2, 3) was the sub-wave parameter

vector. The objective function for optimization can be defined as

follows:

Min f (x)~½S(n){f n,xð Þ�2: ð4Þ

We used our recently developed two-stage particle swarm

optimizer (TSPSO) to achieve the parameter optimization in

formula (4) and the detailed description about TSPSO could be

found in [11]. Figure 3 showed the examples of waveform fitting

for the normalized pulse episodes from Figure 2 (B) and (C).

Evaluation indices for the change of wave reflection
For Gaussian fitting method, the first Gaussian is usually

regarded as the forward component and the second Gaussian is

usually regarded as the main reflected component

[11,12,22,24,25]. So in this study, we analyzed both the peak

position (C1 and C2) and peak height (H1 and H2) indices from the

first and second Gaussian functions, as well as two derived indices:

the peak position interval between these two Gaussian functions

defined as Cref-forw = C2–C1 and the peak height ratio between

them defined as Href/forw = H2/H1. All six indices were calculated

by averaging the results from the ten successive normalized pulse

episodes.

Statistical analysis
Two-way ANOVA was used to examine the effects of blood

pressure and sex on the selected physiological variables and the

evaluation indices. All of the data were reported as number (No.)

or mean6standard deviation (SD). Statistical significance was set a

priori at P,0.05. All statistical analysis was performed using the

Statistical Package for Social Sciences (V19.0, IBM Corp.

Released 2010, Armonk, New York, USA).

Results

Table 1 shows the results of the selected physiological variables

from all 190 subjects in four blood pressure categories based on the

SBP values (i.e., #110, 111–120, 121–130 and $131 mmHg) as

well as stratified for the sex factor. As expected, all the blood

pressure variables (SBP, DBP, MAP and PP) have significant

differences in the SBP category (all P,0.01) whereas they have no

significant differences in the sex category (all P.0.05). Age and

LVET variables have no significant differences in either the sex or

SBP category (all P.0.05). The other four variables (height, body

mass, body mass index and heart rate) have significant differences

in the sex category (all P,0.05) but only body mass and body

mass index have significant differences in the SBP category (both

Figure 3. Examples of waveform fitting for the normalized pulse episodes. (A) Fitting results for the normalized pulse episode 1 in Figure 2
(B), (B) fitting results for the normalized pulse episode 2 in Figure 2 (C). In each sub-figure, the upper panel shows the original normalized pulse
episode S(n), the fitting curve f(n,x) and the corresponding three Gaussian functions f1(n), f2(n) and f3(n) from left to right in turn. The bottom panel
shows the corresponding residual error of the waveforms fitting.
doi:10.1371/journal.pone.0112895.g003
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P,0.05). In addition, all variables have no significant differences

for the interaction between the sex and SBP categories (all

P.0.05).

Table 2 shows the results of the evaluation indices from the first

and second Gaussian functions. All six indices have no significant

differences in the sex category (all P.0.05). However, all six

indices have significant differences (all P,0.01) in the SBP

category except for the peak position C1. In addition, all six indices

have no significant differences for the interaction between the sex

and SBP categories (all P.0.05).

For both men and women subjects, with the increase of SBP,

the peak position C2 significantly shorten (P,0.01), the peak

height H1 significantly decreased (P,0.01) and the peak height H2

significantly increased (P,0.01), inducing the significantly de-

crease of the peak position interval Cref-forw (P,0.01) and the

significantly increase of the peak height ratio Href/forw (P,0.01).

Discussion and Conclusion

The previous studies have showed that the wave reflection

changed with the age [5,14] and hypertension [1] factors. In the

current study, we aimed to explore if the change of wave reflection

with the increase of blood pressure could be observed using the

recently developed Gaussian fitting method. The radial artery

pressure waveform was modeled by three Gaussian functions. The

peak position and peak height information of the first and second

Gaussian functions, as well as their derived indices, were used to

evaluate the effects of blood pressure and sex factors on the change

of wave reflection. Two-way ANOVA results showed that all

evaluation indices have no significant differences in the sex

category but have significant differences in the SBP category

except for the peak position of the first Gaussian, confirming the

change of wave reflection with the increase of blood pressure when

using Gaussian fitting method.

As traditionally accepted, the first Gaussian is more likely to be

linked with the ejecting blood function of left ventricle and could

be regarded as the forward component of arterial pulse [26]. The

second Gaussian possibly associated with the main backward

component of arterial pulse [12,24,25]. In this study, the peak

position C2 became smaller with the increase of blood pressure,

indicating that the main backward component of pulse occurs

earlier. Meanwhile, with the increase of blood pressure, signifi-

cantly lower of the peak height H1 and higher of the peak height

H2 were found. The former shows the amplitude decline of the

forward component, which can indicate the strength decline of the

ejecting blood function of left ventricle. The latter shows that the

amplitude increases of the backward component, which may be

caused by the increase of artery stiffness. Similar results were also

reported in [13,14]. However, the peak position C1 had no

significant change with the increase of blood pressure, showing

that the stable occurrence of the forward component of arterial

pulse. In addition, all evaluation indices have no significant

differences in the sex category (all P.0.05), and also have no

significant differences for the interaction between the sex and SBP

categories (all P.0.05), verifying that the sex factor does not take a

part in the change of wave reflection in the peripheral artery.

There are also several widely used clinical indices (PWV, AI, RI

and SI) for the assessment of wave reflection in clinical practice

[15,27–29]. These indices are mainly based on the analysis of the

time-reference point features and their responding amplitude

features in the pulse waveform. So the accurate measurement for

the time-reference point features is very important [13]. If the

reflected components move forward, they will mix together with

the forward component and this will induce that the peak of the
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original pulse waveform becomes obtuse. Moreover, the determi-

nation for the time-reference point features is much easily

influenced by the noises. Therefore, any potential improvements

for the accurate assessment of the time-reference point features are

clinically important, and worth further investigation. The Gauss-

ian fitting method is one option of the potential improvements.

One unique aspect of the current study is to use the TSPSO

algorithm to achieve the accurate waveform fitting. We have

reported that the TSPSO method could achieve a high fitting

accuracy for the RAPW signal [11]. The high fitting accuracy

could be observed from the demonstration examples in Figure 3,

where the residual error of waveform fitting is restricted within a

relative low level. It is also worth to note that the acquired three

Gaussian functions for the two consecutive normalized pulse

episodes in Figure 3 are very similar, showing the fine stability of

the Gaussian fitting method. These results suggested that the

Gaussian fitting method could be used as a new approach for

assessing the arterial wave reflection and to explore the

relationship between the Gaussian features and different physio-

logical or pathological factors. To explore the clinical significance

of the acquired indices from the Gaussian fitting method, the

comprehensive comparisons between these indices and the clinical

indices (PWV, AI, RI and SI) could be our future work.
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