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ABSTRACT Compressed Sensing (CS) attempts to acquire and reconstruct a sparse signal from a sam-
pling much below the Nyquist rate. In this paper, we proposed novel CS algorithms for reconstructing
under-sampled and compressed electrocardiogram (ECG) signal. In the proposed CS-ECG scheme, the ECG
signal was first sub-sampled randomly and mapped onto a two-dimensional (2D) space by using Cut and
Align (CAB), for the purpose of promoting sparsity. A nonlinear optimization model was then used to
reconstruct the 2D signal. In the compression scheme, the ECG signal was mapped into the frequency
domain, and the compression was achieved by a series of multiplying and accumulating between the original
ECG and a Gaussian random matrix. For the reconstruction, two matching pursuits (MP) methods and two
blocks sparse Bayesian learning (BSBL) methods were implemented and evaluated by the percentage root-
mean-square difference (PRD). Based on the test with real ECG data, it was found that the proposed CS
scheme was capable of faithfully reconstructing ECG signals with only 30% acquisition.

INDEX TERMS Compressed sensing (CS), compression, electrocardiogram (ECG), reconstruction,
subsampling.

I. INTRODUCTION
The conventionalmethod of 12-lead electrocardiogram (ECG)
signal acquisition is widely used in most static ECG acqui-
sition equipment for patients at rest. Nowadays, the research
to dynamic ECG monitoring is very active as cardiovascular
disease is a major killer worldwide [1], [2]. For example,
in 2017, Apple announced a heart study program cooperated
with Stanford MEDICINE, and one year later they have suc-
cessfully realised ECG data collection and atrial fibrillation
(AF) analysis in their new product. Nevertheless, the current
technical developments may still behind the practical use
for clinical diagnosis. One technical challenge is to perform
dynamic ECG acquisition. Those conventional ECG acquisi-
tionmethods cannot be used in dynamic environment because
of its complex connection configuration and high energy
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consumption. Therefore, a novel ECG acquisition method
should be designed with several features: real-time, lower
power consumption, smaller size, and wireless [3], [4]. Also,
ECG compression algorithms should be applied to reduce the
burden of data transmission and storage. In addition, the ECG
signal quality and reconstruction are of great concern about
its usability for clinical diagnosis.

As a breakthrough to Shannon’s sampling theorem, com-
pressed sensing (CS) [5], [6] has aroused great concerns in
information theory, image processing [7], microwave imag-
ing, pattern recognition and wireless communication [8].
Recently, CS has been used in the design of ECG sig-
nal acquisition, processing and compression framework [9].
By exploiting the block structure of ECG signal in
time domain and an uncorrelated domain, two CS recov-
ery algorithms are proposed in [10]. Simulations show
that the proposed scheme could reduce the compres-
sion ratio by 44%. Mamaghanian et al. [4] apply the CS

37228
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0531-9112
https://orcid.org/0000-0002-1585-3829
https://orcid.org/0000-0003-1965-3020
https://orcid.org/0000-0002-1074-2601


Z. Zhang et al.: Electrocardiogram Reconstruction Based on Compressed Sensing

signal acquisition/compression paradigm for low-complexity
and energy-efficient signal compression of ECG data col-
lected from a wireless body sensor network (WBSN) and
results show that the CS algorithm represents a competi-
tive alternative to state-of-the-art ECG compression solu-
tions in WBSN-based ECG monitoring systems. In [11],
several considerations including sparsity, compression lim-
its, thresholding techniques, and signal recovery algorithms
were presented. Simulation studies showed that compression
factors greater than 16X are achievable for ECG signals with
signal to noise ratio (SNR) greater than 60 dB. In [12], a real-
time CS-based personal ECG monitoring system was pro-
posed. Polania et al. [13] applied distributed CS to exploit the
common support between samples of jointly sparse adjacent
beats. These studies showed that CS would be very effective
in ECG compression.

In this paper, we aim to present a novel CS scheme for
ECG processing. The proposed CS frameworks handle ECG
signal reconstruction based on both data under-sampling
and compression. Our method also considers two types of
correlations in ECG waveforms, including (1) intra-beat
correlation and (2) inter-beat correlation. This is different
from conventional CS-ECGmethods that typically ignore the
inter-beat correlation between adjacent heartbeats. Specifi-
cally, a two-dimensional (2D) signal model is employed to
fully utilise both inter-beat correlation and intra-beat cor-
relation to recover the under-sampled signal. While in sig-
nal compression and reconstruction, several considerations
including sampling frequency, compression ratio and recon-
struction time are investigated to find the best settings for the
CS-based ECG data processing.

The following paragraphs are organised as follows:
Section II gives the reasons why we choose CS for ECG pro-
cessing. Section III elaborates the proposed CS-ECG frame-
work. In section IV, testing results are presented. Discussions
and conclusions are presented in section V and Section VI,
respectively.

II. WHY COMPRESSED SENSING
According to Shannon’s sampling theorem, in order not
to lose information when uniformly sampling a signal,
the minimum sampling rate should be twice of the sig-
nal bandwidth [9]. To satisfy this minimum sampling rate,
the transmission and storage burden would become quite
large for high-frequency signals, such as images and videos.
In addition, the traditional signal acquisition and compression
scheme has several drawbacks: i) the signal needs to be com-
pletely sampled before compression, and ii) the compression
process is realised with complex algorithms. There is an
unavoidable problem that some data acquired at high com-
putational cost would still be discarded during compression.
This leads to a huge waste of resources.

In 2004, Candes, Donoho and Tao proposed com-
pressive sensing theory that breaks the conventional
procedure [6], [14], [15]. It indicates that the compressible
data can be sampled and reconstructed accurately with much

lower sampling rate than Nyquist rate. Different from Shan-
non’s sampling theorem, CS sampling and compression are
to be achieved simultaneously. Three basic requirements for
CS need to be satisfied, which are incoherence, sparsity
and nonlinear reconstruction [14], [16], [17]. The benefit of
incoherence is that it ensures the noise-like artifacts, which
can be reduced by using a filtering mechanism [17], [18].
To enhance the incoherence, random sampling is employed
during the signal acquisition process. Moreover, If the orig-
inal signal is sparse in some transformation domain, it can
be projected to a lower dimensional observation vector [19].
Then the original signal can be reconstructed from the
acquired vector by solving sparse optimisation problems.
Under this theoretical framework, the required sampling
frequency is determined by the sparsity of the original signal
rather than its bandwidth. The CS signal acquisition requires
a more complex and high-computational reconstruction pro-
cess which can be achieved by more advanced computing
facilities [20]. The mathematical model of CS is given in
Appendix.

III. PROPOSED FRAMEWORK
In this work, we propose novel CS algorithms for reconstruct-
ing under-sampled and compressed ECG signal.

A. ECG ACQUISITION AND RECONSTRUCTION
There are two steps involved in ECG signal subsampling and
reconstruction. Firstly, during the signal acquisition process,
a random sampling scheme is employed to enhance the inco-
herence and to reduce the number of measurements signifi-
cantly. Secondly, the acquired ECG signal is re-arranged into
a 2D array using Cut and Align (CAB), which is used to
explore signal sparsity further. At last, a nonlinear optimisa-
tion model is used to recover the original signal. The block
diagram of the proposed framework is presented in Fig. 1. The
framework starts with inputting an original under-sampled
ECG signal and ends with outputting the reconstructed ECG
signal.

1) UNDER-SAMPLING PATTERN
The incoherence in CS ECG is achieved by a modified uni-
formly random sampling pattern. The pattern is uniformly
under-sampled in the whole process and densely sampled
in the QRS area. As is shown in Fig. 1 (a) and (b), a fast
QRS detection method based on optimised knowledge [21]
is applied on a given ECG signal to detect the R-peak.
This allows us to estimate the mean heartbeat period from
R-R intervals and locate the region of interest (RoI). The
mask for sampling is constructed with RoI densely sampled
while other areas sparsely sampled. Although this acquisition
scheme leads to the artifacts noise-like, in the sparse trans-
form domain, the significant coefficients are much larger than
the noise-like interference, which can be eliminated by using
noise removal algorithms.
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FIGURE 1. The block diagram of ECG acquisition and reconstruction in the
proposed 2D scheme.

2) DATA PREPROCESSING AND TRANSFORM SPARSITY
The construction of the 2D ECG array is illustrated in
Fig. 1 (c) and (d). The under-sampled signal is segmented
according to the heartbeat period. Since ECG signal is quasi-
periodic, each R-R interval is not necessarily the same. There-
fore, in order to make sure the length of each segment is
uniform, an appropriate number of zeros is padded to the end
of each heartbeat data sequence. Then the segmented signals
are aligned according to R-peak to construct the 2D array
so that the RoI of each period can be aligned in the same
position of each row. As a result, the inter-beat correlation
between adjacent heartbeats would be utilised in the 2D ECG
reconstruction. Fig. 1 (c) is a 3D view of 2D under-sampled
signal, and Fig. 1 (d) is the planform of Fig. 1 (c). The
black dots in Fig. 1 (d) show the un-sampled signal while the
non-black parts are the sampled. The grey scale corresponds
to the intensity of each pixel, where dark represents smaller
value and the bright represents larger values.

The sparsity of ECG signal can be observed in the Fourier
domain as shown in Fig.2. Fig. 2 (c) is the original 2D ECG
array in Fourier domain, where the principal components are
concentrated only in the low frequency area. Fig. 2 (d) shows
the undersampled signal in Fourier domain, where the arti-
facts are noise-like and far below the principal components.

3) NON-LINEAR RECONSTRUCTION
After the signal being partially acquired and formulated into
2D space, we employ the non-linear signal reconstruction
algorithm to reconstruct the signal. The reconstruction can

FIGURE 2. ECG signal and its sparsity in frequency domain. (a) Original
ECG signal. (b) Frequency domain of (a). (c) Frequency domain of 2D ECG.
(d) Frequency domain of under-sampled 2D ECG.

be modelled as the following optimisation problem:

minimize ‖ψx‖1 s.t. ‖y− φx‖2 < ε (1)

Suppose the reconstructed signal in 2D is x, let y
denote acquired under-sampled signal, 8 represent acquisi-
tion matrix, and 9 indicate the sparse transformation.

To find the solution x, the above optimization problem is
converted to the following constrained optimization model:

x̂ = argmin
x

(
‖y− φx‖22 + λ ‖ψx‖1

)
(2)

where ‖.‖2 denotes l2-norm operation, ‖.‖1 denotes l1-norm
operation, and λ is the regularization parameter. l2-norm
controls the data fidelity, and the l1 norm ensures the sparsity
of the signal. The conjugate gradient optimization algorithm
is employed to iteratively find the solution x.

B. ECG COMPRESSION AND RECONSTRUCTION
This subsection presents the ECG signal compression and
reconstruction. The block diagram of the proposed frame-
work for compressed signal reconstruction is presented
in Fig. 3. The framework starts with inputting an original
ECG signal and ends with outputting the reconstructed ECG
signal.

1) RE-SAMPLING
Zamolo [22] demonstrate that Sample Frequency (SF) is a
key factor determining the performance of compression and
reconstruction. In this study, we resample the signal to SFs
of 260 Hz, 360 Hz, and 480 Hz respectively.

2) SIGNAL COMPRESSION
In this study, we use a Gaussian random matrix [23] to
acquire the compressed signal from the original ECG. The
compression procedure of CS can be summarised as a series
of multiplication and accumulation between ECG signal and
measurementmatrix [24]. The scheme of the CS compression
is shown in Fig. 4. It is noted that a further mathematical
illustration of Fig. 4 is given in Fig. 11 in Appendix.
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FIGURE 3. The block diagram of ECG compression and reconstruction in the 1D scheme.

FIGURE 4. The scheme of 1D CS compression. Noting that different
colours in X, 8, and Y indicate different entries.

The reconstruction performance is highly related to Com-
pression Ratio (CR) [22], and different CRs from 30% to 70%
with a 5% step are tested to find the relationship between CR
and the reconstruction performance. CR is defined as:

CR =
M
N
× 100% (3)

where M represents the length of the measurement signal and
N is the length of the original ECG.

3) SIGNAL RECONSTRUCTION
In this paper, fully-acquired ECG signal is mapped to
frequency domain as its sparse space (see Fig.2 (b)).
The compressed signal is reconstructed by applying four
commonly used recovery algorithms. Orthogonal Match-
ing Pursuit (OMP) algorithm [25], [26] reconstructs the
first K maximum in the frequency domain of ECG sig-
nal and acquires the reconstructed data through inverse
Fourier transformation. Compressed Sampling Matching
Pursuit (CoSaMP) algorithm [27], [28] applies similar prin-
ciples of OMP. However, it chooses more atoms than
OMP algorithm during iteration. For Bound-Optimization-
based Block Sparse Bayesian Learning (BO_BSBL) and
Expectation-Maximum-based Block Sparse Bayesian Learn-
ing (EM_BSBL), they both exploit the intra-block correlation

in the block sparse model [29]–[31]. The ECG reconstruction
is tested with real data.

The detailed program flow of real-data simulations is given
in Fig. 5, and it consists of threemain steps and four sub-steps.
To reduce the effect of randomisation, we repeat each simu-
lation 100 times and report the mean and standard deviation
(SD) values of each performance metrics.

FIGURE 5. Program flow of real-data simulations.

C. EVALUATION
Percentage of Root-mean-square Difference (PRD) [10] is
commonly used to evaluate the performance of ECG recon-
struction. It represents the differences between the original
ECG and the reconstructed signal, and the smaller PRD
value indicates the better reconstruction performance. PRD
is defined as:

PRD =

∥∥x̂ − x∥∥2
‖x‖2

× 100% (4)
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FIGURE 6. The under-sampled reconstruction results for ‘1626’ with different CR: 30% (PRD=6.23%), 40% (PRD=5.62%), 50% (PRD=5.34%), 60%
(PRD=4.64%), and 70% (PRD=4.33%) from left to right.

where x̂ is the reconstructed signal, x is the original ECG and
‖.‖2 denotes 2-norm operation. It is widely acknowledged
that a reconstructed signal can be accepted only if the corre-
sponding PRD ≤ 9% [10]. For ECG compression and recon-
struction, the Reconstruction Time (RT) is also recorded to
compare the efficiency of different reconstruction algorithms.
The experiments are performed in MATLAB R2014a on a
computer with 3.30G-CPU and 4.00G-RAM.

IV. RESULTS
We use the data from MIT-BIH Normal Sinus Rhythm
Database (NSRDB) of Physionet [32], in which subjects
included had no significant arrhythmias. Single leads from
records 16265, 16272, 16273, 16483, 16786, 17453, 18177,
18184, 19190 and 19140 are employed for the experiments
in this paper. The recordings are digitized at 128 samples
per second with 11-bit resolution.

A. ECG UNDER-SAMPLING
In this subsection, we give the results for under-sampled ECG
reconstruction using the proposed method.

Fig. 6 shows the overall simulation performance on
16265 from 70% to 30% acquisition. It can be seen that
the reconstructed results are close to the original results,
especially in the region of interest. The PRD is less than 9%,
and the residual errors are quite small.

Fig.7 illustrates the simulation results on different test
data with different CR, which represents the amount of
data acquired. It is clear that the PRD is decreased with an
increased sampling rate from 30% to 70%. All the simulated
results have PRDs smaller than 9%, which means the pro-
posed method is feasible for practical applications.

B. ECG COMPRESSION AND RECONSTRUCTION
In the following, we present the results for ECG compression
and reconstruction under different simulation settings.

1) PRD vs. CR vs. SF
Fig. 8 illustrates the PRD vs. CR for four recovery algorithms
at different SFs. For all the four methods, we compare the
PRD when CR varies from 70% to 30% and four SF values,
which are SF = 128 Hz, SF = 260 Hz, SF = 3604 Hz and
SF = 480 Hz respectively. The purpose of these simulations

FIGURE 7. The under-sampled reconstruction results with different CR.

FIGURE 8. PRD vs. CR vs. SF for 4 recovery algorithms. (A) SF=128 Hz.
(B) SF=260 Hz. (C) SF=360 Hz. (D) SF=480 Hz.

is to define the suitable set of settings that allows achieving a
smaller PRD and, on the other hand, we desire to find the best
choice of recovery algorithm with the smallest CR. In sub-
figures (A) and (B), when SF = 128 Hz or SF = 260 Hz,
it is clearly shown that the two BSBL methods outperform
MP methods. The two MP methods cannot achieve a PRD
less than 9% even with the highest CR = 70%. While when
SF is increased to 360 Hz or 480 Hz, subfigures (C) and (D)
show that the PRD of four algorithms all turns smaller.
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FIGURE 9. RT vs. CR vs. SF for 4 recovery algorithms. (A) SF=128Hz.
(B) SF=260Hz. (C) SF=360Hz. (D) SF=480Hz.

Specifically, OMP could even achieve a similar performance
with two BSBL methods, EM_BSBL deteriorates rapidly as
CR is decreased to less than 45%, BO_BSBL still keeps
good performance even with a slight increase of CR, whereas,
CoSaMP is the worst one with PRD> 9% even at the highest
CR = 70%.

2) RT vs. CR vs. SF
In order to compare the time differences for the applied
algorithms, RTs are recorded for the reconstruction of a 10-s
ECG signal. Similarly, Fig. 9 illustrates the RT vs. CR for four
recovery algorithms at different SFs. CR is decreased from
70% to 30%, and RT is compared between different recovery
algorithms and SFs. It shows that RT of both BSBL methods
is always higher than that of two MP methods, and BSBL
methods would perform faster at a smaller CR. Whereas,
MPmethods are less sensitive to CR and intend to reconstruct
at stable RTs. Specifically, EM_BSBL would be slightly
faster than BO_BSBL at most times, but the superiority is
not obvious. It is noted that an RT < 10s is accepted here
because we give the results for the reconstruction of a 10-s
ECG signal. In other words, the RT is accepted only when it
is less than the time length of the original ECG in real-time
applications.

3) EVALUATION OF RECOVERY ALGORITHMS
In this section, we rank the recovery algorithms considering
all the desired performance metrics, i.e., a smaller CR, a
smaller SF, and anRT as smaller as possible for PRD< 9%. In
Table 1, we summarise the minimum CR and its correspond-
ing RT at fixed SF for each recovery algorithm when PRD <
9%. The bold in Table 1 emphasises the best choice for each
fixed SF. For example, when SF = 480 Hz, a CR of 30% is
enough for BO_BSBL, while the minimum CR for OMP and
EM_BSBL is higher to 35% and 45% respectively, whereas,
a CR as high as 70% is still infeasible. Thus, the best choice
when SF = 480 Hz is BO_BSBL. The other three cases are
also given in Table 1. It is noted that as the SF is decreased

TABLE 1. The minimum CR and the corresponding RT for PRD < 9%.

from 480 Hz to 128 Hz, the required minimum CR for each
algorithm increases correspondingly, whereas RT decreases
on the contrary. The last column gives the best choice of
recovery algorithm for each case. It shows that BO_BSBL
is always the one. Besides, it should be pointed out that we
give more weights to CR than RT when considering the best
recovery algorithm. That is because even the longest RT is
Table 1 (9.03s for EM_BSBL) is still feasible for a 10-s ECG.

4) RECONSTRUCTION EXAMPLES
Fig. 10 shows examples of the reconstructed signal wave-
forms compared with the original ECG. Fig.10 (A) - (D)
represent examples at different SFs respectively. In each
subfigure, OMP (top left), CoSaMP (top right), BO_BSBL
(bottom left) and EM_BSBL (bottom right) are illustrated
respectively. For each algorithm, the upper one gives ECG
waveforms from original and reconstructed signals while the
lower one represents the residual error between them.

V. DISCUSSIONS
A. RECONSTRUCTION PERFORMANCE OF THE FOUR
RECOVERY ALGORITHMS
Fig. 8 reveals that:

• The reconstruction PRD of the four algorithms all
appears no significant signal degeneration when the
original ECG is acquired at a CR higher than 50%,
which means a blindly increasing CR provides no help
to improve the reconstruction performance. Instead,
the power consumption during data acquisition would
increase. As a result, a trade-off is needed to find the
best CR for the lowest power consumption.

• EM_BSBL would provide a very good reconstruction
performance at a higher CR, whereas it turns deterio-
ration rapidly as the CR is decreased lower than 45%.
However, BO_BSBL appears much more stable even
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FIGURE 10. Examples of the reconstructed ECG waveforms (1s) compared with the original signal
using four different algorithms. (a) SF=128 Hz, CR=55%. (b) SF=260 Hz, CR=40%. (c) SF=360 Hz,
CR=35%. (d) SF=480 Hz, CR=30%.

with a lower CR, which is another reason why we con-
sider BO_BSBL as the best algorithm.

• Both BSBL methods have obvious superiority to MP
methods, whereas this superiority becomes smaller as
the original ECG is sampled at higher SF.

At the same time, Fig. 9 reveals that:

• The needed reconstruction time of BSBL methods is
much more sensitive to CR compared withMPmethods.
It clearly shows that the RT of BSBL methods decreases
rapidly as CR turns smaller, which is because the amount
of data needed to be reconstructed decreases with a
smaller CR.

• It is worth noting that the RTs in Fig. 9 present the
reconstruction time for a 10-s original ECG. In real-time
applications, the RT is only acceptable when it is less
than 10 s, which means that the reconstruction speed
needs to be higher than the acquisition one.

B. THE CHOICE OF SF
From Table 1 and Fig. 8, it is evident that the best perfor-
mance, in terms of CR, is obtained when the signal is sampled
at 480 Hz. However, this consideration is not entirely true

because it does not take into account the final amount of data.
Indeed, we focus on the low power consumption during data
storage and transmission, and it is highly influenced by the
total amount of acquired data. Therefore, the choice of 480Hz
may be not suitable for practical applications.

In Table 1, if we choose the BO_BSBL as the recovery
algorithm, the minimum CR is 30% when the data is sampled
at 480 Hz. As a result, 1440 samples need to be acquired
for a 10-s ECG signal. Whereas, in the other three cases,
if the original ECG is sampled at 360 Hz with a CR of 35%,
1260 samples are required; if it is sampled at 260 Hz with a
CR of 40%, 1040 samples are required, while if it is sampled
at 128 Hz with a CR of 55%, only 704 samples are required.
Therefore, a lower SF allows acquiring a smaller amount of
samples, with the acceptable PRD value, even if the CR is
much higher. It also reveals that the 1D CS model does not
have the requirement for a higher sampling frequency.

C. ECG ACQUISITION AND RECONSTRUCTION
The under-sampled acquisition process utilises the QRS
detection to realise modified random sampling, where QRS
is densely sampled. The pattern, which acquires less data,
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results in a faster process and accurate reconstruction. With
only 30% acquisition, the reconstruction results are accurate
with PRD far less than 9%. We repeat the proposed methods
on ten datasets, and the results are all promising.

In the reconstruction process, we also tried to add total vari-
ation regularisation to smooth the signal. However, the PRD
has less than 5% improvement. To save the computational
complexity, we discard the TV regularisation and only keep
the data fidelity and sparsity control.

VI. CONCLUSION
In this paper, we have presented novel CS algorithms for ECG
reconstruction on under-sampled and compressed signals.

In the reconstruction of under-sampled acquisition, RoI,
such as the QRS complex, was first detected so that it can
be densely sampled. The acquired signal was formulated into
2D signal by using CAB to fully utilise both inter-beat and
intra-beat correlations. The non-linear reconstruction algo-
rithm was then utilized to obtain the reconstructed signal and
results showed that this proposed framework could realise
acceptable reconstruction with no more than 30% sampling.
In terms of ECG compression, it was realised by a series
of multiplication and accumulation between ECG signal and
a Gaussian random matrix. As for the signal reconstruc-
tion, MP and BSBL methods were given the comparisons.
Real-data simulations were performed in order to find the best
CS settings for ECG compression, including sampling fre-
quency, compression ratio, and recovery algorithms. Results
showed that BSBL methods had better reconstruction accu-
racy while MP methods are very efficient in implementation.
Specifically, BO_BSBL was the best choice of making a
trade-off between PRD and RT.

In the near future, the proposed CS methods will be
improved in terms of efficiency and accuracy, and then tested
with acquired ECG data.

APPENDIX
THE MATHEMATICAL MODEL OF COMPRESSED SENSING
Consider a real-valued, finite-length, discrete-time, and
one-dimensional signal X = [x1, x2, . . . , xN ]T , it can be rep-
resented with a set of orthogonal basis 9 = {ϕi}Ni=1:

X = 9s (5)

where s is the projection coefficients, and it would contain the
same information as X.

If X or s contains only K nonzero elements, then the signal
is called K-sparse. Sparsity is the premise for the application
of CS; a better choice of sparse dictionary will guarantee
sufficient sparsity of the transformed coefficients.

In addition to sparsity, measurement matrix 8 for signal
acquisition and an efficient recovery algorithm are another
two critical aspects of the CS method.

1) SIGNAL ACQUISITION
CS theory intends to acquire the general linear measure-
ment from the original signal by constructing an M× N

measurement matrix 8:

8 =
{
φj
}M
j=1 (6)

Restricted isometry property (RIP) condition [33], [34] is
required for the design of measurement matrix. It requests
that for any vector ν that sharing the same K nonzero entries
as s, it has:

(1− ε) ‖ν‖2 ≤ ‖2ν‖2 ≤ (1+ ε) ‖ν‖2 (7)

where2 = 89 and ε ∈ (0, 1) [9]. In other words, the matrix
2 must preserve the length of ν. However, RIP is difficult
to demonstrate, but it can be seen from a different point
of view: incoherence. An alternative approach to RIP is to
guarantee that the measurement matrix 8 is incoherent [35]
with the sensing matrix 9. CS sidesteps RIP by designing
measurement matrix with random entries.

In our framework, the measurement matrix is built with
entries φi,j from Gaussian distributions:

φi,j ∼ (0,
1
M

) (8)

Then, the M linear measurement signal Y =[y1, y2, · · · ,
yM ]T is obtained by a series of multiplying and accumulating
as follows:

Y = 8X


y1 = φ11x1 + φ12x2 + · · · + φ1N xN
y2 = φ21x1 + φ22x2 + · · · + φ2N xN

...

yM = φM1x1 + φM2x2 + · · · + φMN xN

(9)

Obviously, each element in Y contains the global infor-
mation of X from x1 to xN . Therefore, Y consists of the M
global measurements to the original signal. Unfortunately,
the number of unknown vectors N is far more than the number
of measurements M. Thus, it is an underdetermined problem
to reconstruct the original signal X from Y. While CS solves
this problem by transferring it to an overdetermined problem.
This is where sparsity works.

Specifically, for a K-sparse signal, it has K degrees of free-
dom. Thus it only needs K measurements for reconstruction.
Combine (5) and (9):

y = 8X = 89s = 2s

×


y1=θ1,1s1+· · ·+θ1,i1si1 + · · · + θ1,iK siK + · · ·+θ1,N sN
y2=θ2,1s1+· · ·+θ2,i1si1 + · · · + θ2,iK siK+· · ·+θ2,N sN

...

yM =θM ,1s1+· · ·+θM ,i1si1+· · ·+θM ,iK siK+· · ·+θM ,N sN
(10)

Because there are only K nonzero entries in s, i.e.,
si1, si2, . . . , siK , (8) can be revised as follows:

y1 = θ1,i1si1 + θ1,i2si2 + . . . θ1,iK siK
y2 = θ2,i1si1 + θ2,i2si2 + . . . θ2,iK siK

...

yM = θM ,i1si1 + θM ,i2si2 + . . . θM ,iK siK

(11)
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There are M equations while K (K� M) unknowns
in (11). This is an underdetermined problem, and there is a
unique solution which is exactly the best reconstruction of
the original signal.

The mathematical model of CS based acquisition can be
depicted in Fig. 11 which is a further illustration of Fig. 4.

FIGURE 11. Illustration of signal acquisition with measurement matrix 8

and sensing matrix 9. Noting that white indicates zero entries while
colors indicate nonzero entries.

2) SIGNAL RECONSTRUCTION
The detailed introduction to signal reconstruction of CS could
refer to [9]. In short, recovery algorithms solve the inverse
problem by applying minimum `1 norm optimisation

ŝ = argmin
∥∥s′∥∥1 such that 2s′ = y (12)

Here, from M ≥ CKlog(N
/
K ) independent and identi-

cally distributed (iid) Gaussian measurements we can exactly
reconstruct K-sparse vectors and closely approximate com-
pressible vectors stably with high probability via the l1
optimization.
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