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Abstract Pattern synchronization (PS) can capture one

aspect of the dynamic interactions between bivariate

physiological systems. It can be tested by several entropy-

based measures, e.g., cross sample entropy (X-SampEn),

cross fuzzy entropy (X-FuzzyEn), multivariate multiscale

entropy (MMSE), etc. A comprehensive comparison on

their distinguishability is currently missing. Besides, they

are highly dependent on several pre-defined parameters, the

threshold value r in particular. Thus, their consistency also

needs further elucidation. Based on the well-accepted

assumption that a tight coupling necessarily leads to a high

PS, we performed a couple of evaluations over several

simulated coupled models in this study. All measures were

compared to each other with respect to their consistency

and distinguishability, which were quantified by two pre-

defined criteria—degree of crossing (DoC) and degree of

monotonicity (DoM). Results indicated that X-SampEn and

X-FuzzyEn could only work well over coupled stochastic

systems with meticulously selected r. It is thus not rec-

ommended to apply them to the intrinsic complex physi-

ological systems. However, MMSE was suitable for both,

indicating by relatively higher DoC and DoM values. Final

analysis on the cardiorespiratory coupling validated our

results.

Keywords Consistency and distinguishability �
Cross sample entropy (X-SampEn) � Cross fuzzy entropy

(X-FuzzyEn) � Multivariate multiscale entropy (MMSE) �
Pattern synchronization

1 Introduction

Physiological variability in blood pressure, heart rate, res-

piration rate, etc., can shed light onto the activities of the

underlying control mechanisms [30]. However, the over-

whelming proportion of the cardiorespiratory system is

nonlinear, and any subtle change should be vital clinical

signs for physiological or pathological transitions, which

can however hardly be appreciated by conventional

approaches. Researchers have benefited from the devel-

opment of chaos theory and many efforts have already been

made to evaluate the physiological relevance [11]. Entropy,

one important measure from chaos theory, has been con-

firmed to be able to unveil valuable information hiding in

the nonlinear complicated structures of physiological sig-

nals [1, 2, 7, 9, 13, 14, 23, 25, 29, 31–33]. Entropy eval-

uates the predictability or complexity for univariate signals

[7, 9, 23, 25] and cross-predictability or synchronization,

which is well accepted as pattern synchronization (PS)

[14, 29, 31, 32], for multivariate series (mostly bivariate

series). PS has been showed as a helpful tool for charac-

terizing non-linearity of neural mechanisms underlying

cardiovascular control [33] or understanding the interregional

functional connectivity across the brain [14, 29, 31, 32].

Cross approximate entropy (X-ApEn) [23], cross sample

entropy (X-SampEn) [25, 29, 33] and cross fuzzy entropy

(X-FuzzyEn) [31, 32] can be used for testing PS. In addi-

tion, the most recently developed multivariate multiscale

entropy (MMSE) [1, 2] has been proved to be catered for
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direct analysis for multichannel interdependence over

multiple scales, which also has a potential for evaluating

PS. The above measures rely on the pattern similarity

between or within different channels of bivariate series

under investigation. However, a comprehensive compari-

son on their capability to distinguish among systems with

different degrees of PS is currently missing to the best of

our knowledge, which thus requires further elucidation.

Besides, their calculation requires a priori determination

of three unknown parameters—embedding dimension m,

threshold value r, and gradient parameter n. It is usually set at

2 or 3 for m no matter how it is chosen (empirically [23] or by

estimation [16]). The parameter n determines the gradient of

the boundary of the fuzzy membership function in X-FuzzyEn

[31, 32]. It is usually set as 1 or 2 which has slight influence.

It is r that affects the results most and thus requires meticulous

selection [6, 8, 19, 21, 23]. Although several approaches based

on empirical selection [23] or automatic estimation [8, 21]

have already been well studied, they are however failed when

applied to physiological signals [19]. It seems that to apply

a less r-dependent measure is more feasible than to develop

procedures for its automatic estimation. Thus, the consis-

tency with its variation also needs serious consideration.

Altogether, the uncertainty in their distinguishability

and consistency drives the desire for more rigorous studies.

For experimental data the underlying synchronization

information is usually unknown in advance, it is thus dif-

ficult to validate different measures through them. Simu-

lation models with their underlying dynamics completely

known are competent instead. Based on the assumption that

an increase of coupling strength c necessarily leads to an

increase of synchronization [4, 17, 27, 28, 31], we

employed two linearly coupled stochastic systems (coupled

broadband noise model [4, 31] and coupled MIX(p) pro-

cesses) and two nonlinearly coupled chaotic systems

(coupled Hénon maps [17, 28] and coupled Rössler sys-

tems [17, 27, 31]) for our evaluation. Herein, the threshold

value r could be finely tuned for assessing the consistency,

and ditto the coupling strength c for distinguishability.

X-SampEn, X-FuzzyEn and MMSE were rigorously com-

pared with their performances quantified by two pre-

defined criteria, while X-ApEn was excluded because it is

biased and lacks relative consistency [25, 31]. Finally to

demonstrate their performances on real physiological sig-

nals, the PS in cardiorespiratory coupling was analyzed.

2 Methods

2.1 Brief descriptions of the tested PS measures

Brief descriptions of X-SampEn, X-FuzzyEn and MMSE

are summarized in table 1.

2.2 Simulation models

2.2.1 Coupled broadband noise model (M1)

This coupled system was generated by mixing the common

noise n1 with two independent white noises n2, n3 [4, 31],

x ¼ cn1 þ ð1� cÞn2

y ¼ cn1 þ ð1� cÞn3

ð1Þ

where c varied from 0 to 0.7 in steps of 0.1.

To eliminate random factors, for each value of c, we

generated 20 realizations, and the means of the corre-

sponding 20 X-SampEn, X-FuzzyEn and MMSE results

were used as the final values. Same procedures were

implemented for 20 times.

2.2.2 Coupled MIX(p) processes (M2)

The MIX(p) process is a sinusoid signal of N points, where

N � p (p is the probability parameter whose value is

between 0 and 1) random chosen points are replaced with

random noise. The details on MIX(p) are summarized in

[23]. The coupled MIX(p) processes were generated by

mixing one MIX(p) process with two others so as to sim-

ulate real world systems which contain large proportions of

low-frequency trend,

x ¼ cMIXðp1Þ þ ð1� cÞMIXðp2Þ
y ¼ cMIXðp1Þ þ ð1� cÞMIXðp3Þ

ð2Þ

where c also varied from 0 to 0.7 in steps of 0.1, the

probability parameters p1, p2 and p3 were chosen as 0.3, 0.5

and 0.7, respectively.

Also, similar procedures were performed as in M1 to

eliminate random factors.

2.2.3 Coupled Hénon maps (M3)

Mathematically, the coupled Hénon maps can be generated

by the following iterations [17]:

x1;nþ1 ¼ 1:4� x2
1;n þ bxx2;n

x2;nþ1 ¼ x1;n

y1;nþ1 ¼ 1:4� ðcx1;ny1;n þ ð1� cÞy2
1;nÞ þ byy2;n

y2;nþ1 ¼ y1;n

ð3Þ

where we took bx ¼ by ¼ 0:3 to yield identical systems and

c varied from 0 to 0.8 incrementing by 0.1. The corre-

sponding trajectories of the two oscillators can be found in

[17] when c varied.

For each value of c, totally 60,000 points were firstly

obtained with n iterating from 1 to 60,000. The last 50,000

points were used for the calculation. Ten pairs of episodes
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with the length 500 were selected randomly with no

overlap from the last 50,000 points and the means of

X-SampEn and X-FuzzyEn results of the ten pairs were

used as the final values. The mean of ten MMSE results

calculated for every 5,000 points from the last 50,000

points was used as the MMSE value.

2.2.4 Coupled Rössler systems (M4)

We used the unidirectional drive-response coupled Rössler

oscillators whose motion equations read:

_x1 ¼ �ðx2 þ x3Þ
_x2 ¼ x1 þ 0:2x2

_x3 ¼ 0:2þ x3ðx1 � 5:7Þ
_y1 ¼ �ðy2 þ y3Þ � cðy1 � x1Þ
_y2 ¼ y1 þ 0:2y2

_y3 ¼ 0:2þ y3ðy1 � 5:7Þ

ð4Þ

The equations were integrated using Runge–Kutta 4th

order with a step size of 0.05 and a sampling interval of

0.3. It has already been illustrated in [27] that the

trajectories of the two oscillators would be identically

synchronized when c ¼ 0:2. Thus, we varied c from 0 to

0.2 in steps of 0.02. The second components x2 and y2 were

used for the calculation, which shared the same procedure

as in M3.

2.3 Criteria for comparison

For all realizations from M1 to M4 with different coupling

strengths, each PS measure was estimated with r varying

from 0.1 to 0.8 in steps of 0.02 (all series were first nor-

malized by its SD as described in Table 1; hence it is

unnecessary of r to be multiplied by SD). The scale factor

e of MMSE was selected from 1 to 10 incrementing by 1.

Thus, it resulted in a 2D-matrix for X-SampEn and

X-FuzzyEn with two parameters—c and r; for MMSE, a

3D-matrix was obtained whose 3rd dimension was e. In

addition, the length of all sequences was 500 for

X-SampEn and X-FuzzyEn which is sufficient for accurate

results, but 5,000 for MMSE so as to guarantee that the

highest scale factor (e ¼ 10) had 500 data points [1, 2].

We fixed m ¼ 2 and n ¼ 2 in X-SampEn and X-FuzzyEn,

and M ¼ ½2; 2�; s ¼ ½1; 1� in MMSE for all calculations

[1, 2, 7, 23].

Theoretically, the projection on entropy values z versus

r plane when c ¼ c1 will not cross over that when c ¼ c2.

Thus, their differences calculated in a point-by-point

manner will have the same sign (all are greater or smaller

than zero); otherwise, part of them is greater than zero and

part smaller or equals to zero. We thus defined the degree

of crossing (DoC),

DoCðeÞ ¼ 1� 2

ncðnc � 1Þ
Xnc�1

i¼1

Xnc

j¼iþ1

fðzi;e; zj;eÞ ð5Þ

where zi;e and zj;e are both vectors whose lengths equal to

the number of different values of r, and f is a function

of two vectors which returns 0 if the differences of

the two vectors have the same sign and 1 otherwise,

e ¼ 1 for X-SampEn;X-FuzzyEn

1; 2; � � � ; 10 for MMSE

�
, nc is the

number of different values of c. The values of DoC varies

from 0 to 1 and a larger DoC value indicates a better

consistency (hence with the variation of r, PS measures of

any two systems will hardly switch, e.g., the result shows

that the PS between {x; y} pair is stronger than {m; n} pair

when r ¼ r1, there hardly exists an r2 showing the PS

between {m; n} pair is stronger than {x; y} pair).

It is believed that the similarity of the pattern architec-

ture of the two coupled systems increases with the increase

of c. Therefore, monotonously decreased X-SampEn and

X-FuzzyEn series and a monotonously increased MMSE

series with the increase of c will be obtained.1 Basically,

for a monotonously decreased series eiði ¼ 1; 2; � � � ;NÞ,
given 8j; 1� j�N, 9ei� ej for all i� j; for a monotonously

increased series eiði ¼ 1; 2; � � � ;NÞ, given 8j; 1� j�N,

9ei� ej for all i� j. Thus we defined the degree of

monotonicity (DoM) [17, 31].

DoMðk; eÞ ¼ 2

ncðnc � 1Þ
Xnc�1

i¼1

Xnc

j¼iþ1

signððzi;k;e � zj;k;eÞ � dÞ

ð6Þ

where k ¼ 1; 2; � � � ; nr, nr is the number of different values

of r, d ¼ 1 for X-SampEn;X-FuzzyEn

�1 for MMSE
:

�
, e and nc

share the same meaning as in (5). For each value of r, a DoM

is obtained which will attain 1 if the projection on z versus c

plane strictly monotonously increases (for MMSE) or

decreases (for X-SampEn and X-FuzzyEn) and -1 otherwise.

Means and SDs for DoC and DoM values were obtained

from all 20 realizations of M1 and M2, while for M3 and

M4 only means of them attained.

3 Results

We would like to explain first that it seems difficult to show

our results for MMSE in one Cartesian coordinate system,

1 With the increase of c, similar patterns are prone to occur. Thus the

cross-predictability increases; hence X-SampEn and X-FuzzyEn

decreases. However, an increase in c leads to an increase in long-

range correlations both within- and between- channels which is

consequently leads to an increase of MMSE.
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since they were all represented by a 3D-matrix. For an

intuitive description, we sliced all 3D-matrix by one

parameter (e) and a number of 2D-slices returned. Since the

values might vary slightly and these slices were too close to

each other, we plotted parts of them for illustration.

Besides, to show how X-SampEn and X-FuzzyEn varied

with different values of r, we plotted their projections

(measures versus r, also part of them) in addition to the

original plots. However, it also seems hard to show how

MMSE at all scales varied with different values of r by the

projections because in this case, we had to project the

MMSE at each scale; hence a number of plots would be

obtained. We did not have enough pages to show them. The

results of the pre-defined criteria were showed instead.

However, it should be noted that although we just plotted

parts of the results for illustration, it did not mean that our

results would be less illustrative. Actually, the occurrence

of just one crossing on measure versus r plane would mean

that it is less consistent; also, low distinguishability would

be resulted if it is less monotonous of measure versus c. In

addition, the pre-defined criteria were plotted using all the

results, whether it was showed or not, which would be

sufficient to make conclusions.

3.1 Dependence on the threshold value r

For M1, all measures decrease with the increase of r

(Fig. 1a–c). The curve of X-SampEn when c ¼ 0:1 crosses

over that when c ¼ 0:2 at about r ¼ 0:17� 0:18 (Fig. 1d),

while no crossing-over occurs regarding X-FuzzyEn when

r varies from 0.16 to 0.25 (Fig. 1e). Figure 1f summarizes

their DoC values. X-FuzzyEn and MMSE at large scales

(e� 5) attain the highest DoC values. For MMSE at small

scales (e ¼ 1; 2), DoC is nearly 0. And for X-SampEn and

MMSE at medium scales (e ¼ 3; 4), reasonable values for

DoC are obtained.

For M2, it is similar to M1 that all measures decrease

with the increase of r (Fig. 2a–c). Again crossing-over

occurs for X-SampEn (Fig. 2d, also at about r ¼
0:17� 0:18). For X-FuzzyEn, the projections are too close

to distinguish them from each other (Fig. 2e). X-SampEn,

X-FuzzyEn and MMSE at very small and very large scales

(e ¼ 1; 9; 10) all attain much smaller DoC values. For

MMSE at medium scales (e ¼ 2; 3; � � � ; 8), their values are

rather higher (Fig. 2f).

For M3 and M4, differences are observed except that all

measures decrease with the increase of r (Figs. 3a–c, 4a–c).
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Fig. 1 Simulation results for

coupled broadband noise model

(M1). a A 3D-plot of [r, c,

X-SampEn]. b A 3D-plot of

[r, c, X-FuzzyEn]. c A sliced-

3D-plot of [r, c, MMSE]. d The

projection of X-SampEn versus

r. e The projection of

X-FuzzyEn versus r. f DoC

values of X-SampEn,

X-FuzzyEn and MMSE. g DoM

values of X-SampEn and

X-FuzzyEn. h DoM values of

MMSE. X-SampEn (S),

X-FuzzyEn (F) and MMSE of

all 10 scales (S1 ? S10) are

shown from left to right in (f).
The curves are plotted every

other point in (g). The curves
represent an average of 20 trials

and error bars the standard

deviation (SD) in (f) and (g)
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No crossing-over occurs for X-SampEn with r from 0.15 to

0.25 (Figs. 3d, 4d), but their DoC values are all relatively

small (Fig. 3f, which means crossing-over occurs at higher

values of r). For X-FuzzyEn, the results either cross over

each other (Fig. 3e) or are too close (Fig. 4e). Also their

DoC values are all too small. However, MMSE at all scales

have rather higher DoC values (Figs. 3f, 4f).

3.2 Dependence on the coupling strength c

For M1, X-SampEn decreases slightly with the increase of

c when r is small and the decreasing trend is more obvious

when r is larger (Fig. 1a). Similar behavior can be found for

X-FuzzyEn (Fig. 1b), but the trend is more clear even for

smaller r. MMSE at larger scales increases clearly with the

increase of c (Fig. 1c). To evaluate their monotonicity

quantitatively, the DoM values are summarized in Fig. 1g, h.

They are nearly 1 at almost all values of r for X-FuzzyEn

and MMSE at larger scales (e� 4). X-SampEn and MMSE

at medium scales (e ¼ 3) have reasonable DoM values but

X-SampEn has significant fluctuations in different trials.

MMSE at smaller scales (e ¼ 1; 2) attains negative DoM

values.

For M2, a slight ceiling effect on the low values of the

coupling strength can be observed for X-SampEn and

X-FuzzyEn, where they both increase first and then

decrease with the increase of c (Fig. 2a, b). The effect is

less obvious for X-FuzzyEn at larger r. The behavior of

MMSE is similar to that of M1 (Fig. 2c). For quantitative

evaluation (Fig. 2g, h), the DoM values attains nearly 1 for

X-FuzzyEn with large r values (r� 0:5) and MMSE at

medium scales (e ¼ 2; 3; � � � ; 7), while for X-SampEn, part

of them are positive but rather small and part negative

when different r is selected. Also, significant fluctuations in

different trials are showed.

A severe ceiling effect is observed for both X-SampEn

and X-FuzzyEn regarding M3 (Fig. 3a, b), especially when

smaller values of r are used, while the results for MMSE
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Fig. 2 Simulation results for coupled MIX(p) processes (M2). a A

3D-plot of [r, c, X-SampEn]. b A 3D-plot of [r, c, X-FuzzyEn]. c A

sliced-3D-plot of [r, c, MMSE]. d The projection of X-SampEn

versus r. e The projection of X-FuzzyEn versus r. f DoC values of

X-SampEn, X-FuzzyEn and MMSE. g DoM values of X-SampEn and

X-FuzzyEn. h DoM values of MMSE. X-SampEn (S), X-FuzzyEn

(F) and MMSE of all 10 scales (S1 ? S10) are shown from left to

right in (f). The curves are plotted every other point in (g). The curves
represent an average of 20 trials and error bars the standard deviation

(SD) in (f) and (g)
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are rather monotonous (Fig. 3c). Subsequently, the DoM

values for X-SampEn and X-FuzzyEn are all very small

and even negative. In contrast, MMSE attains relatively

reasonable DoM values.

The variation tendency of the three measures for M4 is

not very obvious (Fig. 4a–c). But the quantitative results

can be easily read from Fig. 4g, h. When r is small

(r� 0:2) or is large enough (r� 0:6), X-SampEn attains

larger DoM values, while for X-SampEn with a relatively

wide medium range of r and X-FuzzyEn, the DoM values

are too small. For MMSE, the DoM values are nearly 1

with almost all values of r.

3.3 Application to cardiorespiratory coupling analysis

It seems from the above results that MMSE is relatively

less r-dependent. For X-SampEn and X-FuzzyEn, it also

seems difficult to make conclusions about how to choose it.

The only workable means is probably to choose the values

which most reliably yield valuable information (a retro-

spective analysis, valuable information could be e.g.,

information useful for separating purposes, etc.).

To demonstrate the validity to physiological systems,

we compared their performances on the analysis of

cardiorespiratory coupling (CRC). It is believed that there

are transitions in CRC with the changes of physiological

states (e.g., healthy aging) [5]. Using a subset (10 healthy

young and 10 healthy old with 7 women and 3 men in

each group) from the FANTASIA database [12, 15], a PS

decrease was also observed by MMSE analysis [1]. We

would like to use another subset (also 10 healthy young

and 10 healthy old but with 5 women and 5 men in each

group; ECG and respiration signals were sampled at

250 Hz and lasted for 2 h) to compare the performances.

Because almost all values for r worked well for MMSE

according to the above simulations, we simply chose

r ¼ 0:4. We chose r ¼ 0:2 for X-SampEn and X-FuzzyEn

based on a retrospective analysis. The RRI series
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Fig. 3 Simulation results for coupled Hénon maps (M3). a A 3D-

plot of [r, c, X-SampEn]. b A 3D-plot of [r, c, X-FuzzyEn]. c A

sliced-3D-plot of [r, c, MMSE]. d The projection of X-SampEn

versus r. e The projection of X-FuzzyEn versus r. f DoC values of

X-SampEn, X-FuzzyEn and MMSE. g DoM values of X-SampEn and

X-FuzzyEn. h DoM values of MMSE. X-SampEn (S), X-FuzzyEn

(F) and MMSE of all 10 scales (S1 ? S10) are shown from left to

right in (f). The curves are plotted every other point in (g)
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(consecutive R–R intervals within an ECG sequence) and

IBI series (consecutive inter-beat intervals within a

simultaneously recorded respiration sequence) from each

subject were used. To avoid the potential influence of

spikes introduced by premature ventricular contractions or

distortion in signal recordings [22], we applied an

anomalous-intervals-removing process [20] priori to their

calculation. In addition, the same to simulated models, we

chose the first 500 points from RRI and IBI series for the

calculation of X-SampEn and X-FuzzyEn, and the first

5,000 points for MMSE. For rigor, the corresponding

randomized surrogate series were also produced (by ran-

domly reordering).

Figure 5 shows the overall performances on the original

and randomized bivariate signals (RRI and IBI series) of

them. The MMSE values at larger scales for the random-

ized surrogates are lower than that for the original bivariate

signals, confirming a complex temporal structure within

RRI and IBI series. X-SampEn and X-FuzzyEn for the

healthy elderly are severely overlapped with those for the

healthy young, while the separation between the MMSE

curves is higher, especially at medium and larger scales.

MMSE decrease significantly, whereas larger X-SampEn

and X-FuzzyEn values showed in healthy elderly.
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Fig. 4 Simulation results for coupled Rössler systems (M4). a A 3D-

plot of [r, c, X-SampEn]. b A 3D-plot of [r, c, X-FuzzyEn]. c A

sliced-3D-plot of [r, c, MMSE]. d The projection of X-SampEn

versus r. e The projection of X-FuzzyEn versus r. f DoC values of

X-SampEn, X-FuzzyEn and MMSE. g DoM values of X-SampEn and

X-FuzzyEn. h DoM values of MMSE. X-SampEn (S), X-FuzzyEn

(F) and MMSE of all 10 scales (S1 ? S10) are shown from left to

right in (f). The curves are plotted every other point in (g)
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4 Discussion

It is an open problem to adequately determine interactions

between bivariate physiological systems where their cou-

pling is not known a priori. Synchronization provides an

insight into the underlying interaction mechanisms. There

are probably 100 or even more measures have been

developed for testing it (the readers can refer to studies of

Ansari-Asl et al. [4], Kreuz et al. [17] and Dauwels et al.

[10] for a review). Among them, most measures test only

the local time synchronicity, e.g., generalized synchrony

[27, 28], phase synchrony [26], event synchrony [24], etc.

But it is also believed that a tight coupling can cause

predictable pattern architectures, which provides as the

basis of pattern synchronization (PS). PS focuses on the

similarity of patterns in the whole time range among dif-

ferent channels of signals. It can be tested using a variety of

entropy-based measures. These measures are fully data-

driven; hence suitable for direct analysis of nonlinear and

non-stationary systems. However, their calculation requires

three pre-defined parameters, among which the threshold

value r is proved to be the most influencing factor [8, 18,

19, 21]. The empirical values might give incorrect results

when applied to the complex physiological systems.

Although Xie et al. [31] published a comparative study and

concluded that X-FuzzyEn performed better than X-Sam-

pEn in terms of degree of monotonicity and robustness

against noise. But they used a fixed r (0.15) when simu-

lating. According to our most recent study [18], crossing-

over also could not be avoided even using X-FuzzyEn

when r varied. Thus, it is uncertain whether the results of

Xie et al’s study would be the same or not when adopting

another r. Also there is currently no publications about how

r influences MMSE.

Therefore, we tried to gain an insight into the various

behaviors of different PS measures using different model

systems in this study. We used coupled broadband noise

model (M1), coupled MIX(p) processes (M2), coupled

Hénon maps (M3) and coupled Rössler systems (M4) for

our testing. These models have been widely employed to

represent a wide range of signal dynamics encountered in

physiological recordings [4, 17, 19]. Thereinto, the first two

systems have a stochastic nature and the last two have a

chaotic nature. We tested three measures—cross sample

entropy (X-SampEn), cross fuzzy entropy (X-FuzzyEn)

and multivariate multiscale entropy (MMSE)—in this work

and defined two geometry-based criteria to quantify their

performances (consistency and distinguishability).

Our results demonstrate that single scale analysis

(X-SampEn and X-FuzzyEn) may only be acceptable on

coupled stochastic systems (M1 and M2). This is reminis-

cent of multiscale entropy for complexity analysis of uni-

variate time-series [9]. Stochastic systems fundamentally

reveal fewer structures and thus their pattern similarity

could be well exhibited in single scale. Besides, X-SampEn

fails to make a distinction between coupled systems with

higher amount of low-frequency trend (M2, with very low

DoM values). We have reported a similar phenomenon

before [18]. In this case, X-FuzzyEn performs better than

X-SampEn. This may be explained by the removing of a

local average when calculating X-FuzzyEn [31, 32], which

makes it less sensitive to the low-frequency trend. In

addition, X-SampEn is less robust with large fluctuations in

different trials. It reminds us that our calculation procedure

will make the results more credible than that just from one

random realization as was done in [31]. It is worth noting

that for acceptable results when applying them, a suitably

selected r is required. Since it seems no regular behavior

showed in our results, a retrospective analysis of pragmat-

ically chosen one value which most reliably yields valuable

information should be one solution although it needs large

amount of calculation.

However, MMSE works well on both coupled stochastic

systems (M1 and M2) and coupled chaotic systems (M3

and M4) without much consideration on the selection of r,

especially at medium or larger scales. For MMSE at

smaller scales, it may fail because it has a SampEn nature

at these scales [1, 2]. This again addressed that complex

dynamics need multiple scales to reveal their intrinsic

structures. Besides, with higher amount of low-frequency

trend (M2), MMSE at larger scales also fails. Since mainly

low-frequency components are present at larger scales,

their influence to MMSE needs to be considered. It might

be advisable to apply de-trend algorithms first.

By comparison, the analysis in multiply scales over-

whelms the substitution of fuzzy membership function for

the Heaviside function (one improvement in consistency,

see [7, 32] for a review) when complex dynamics is

dominant. However, one problem in MMSE is the distinct

decrease of the length at larger scales due to the coarse-

graining procedure. To capture scales more robustly, many

efforts are now under their way [3, 13].

Overall, we argue that MMSE is relatively superior to

X-SampEn and X-FuzzyEn in terms of consistency and

distinguishability. Our final analysis on cardiorespiratory

PS convincing it, which shows low separation of the latter

two between different age groups and an opposing con-

clusion as to MMSE. But it does not mean that the latter

two measures are totally not desirable. For several coupled

systems (stochastic-featured), they could work with

meticulously selected r. However, it seems difficult to

make a rule for its selection. According to our simulation,

we tried to make some recommendations (see Table 2), not

just for the selection of r but also their suitable applica-

tions. It should also be noted that PS is definitely not the

only way to test the dynamical interactions. Other measures
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such as normalized mutual information are also capable.

However, we are not trying to show their differences; they

just capture different aspects of the interactions. They

could be complementary, but further studies are required.

To summarize, this study evaluates the consistency and

distinguishability of three PS measures—X-SampEn,

X-FuzzyEn and MMSE by four simulation models and

performs one validation on real cardiorespiratory coupling

analysis. Only with meticulously selected threshold value

r, the former two measures can work for coupled stochastic

systems. It is not recommended to apply them for analyz-

ing the intrinsically complex physiological systems.

MMSE is showed to be catered for both with relatively

higher consistency and distinguishability, which is thus

highly recommended.
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